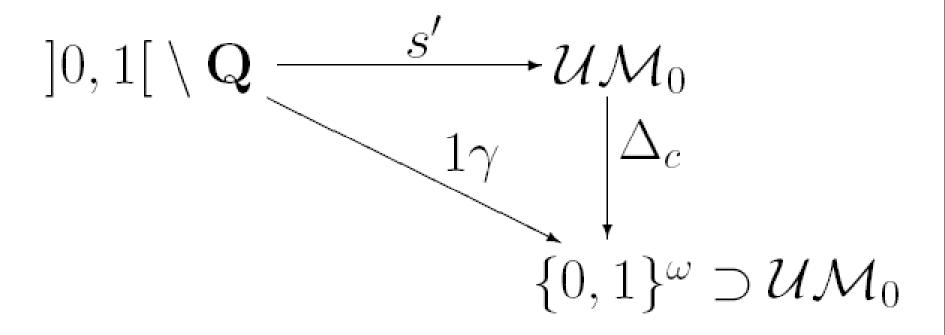
Hanna Uscka-Wehlou



Hanna Uscka-Wehlou

William G. Kolakoski

Run-length encoding operator / fixed point

Herbert Freeman

Chain codes / uniformity / balance

Azriel Rosenfeld

Hierarchy of runs

Hanna Uscka-Wehlou

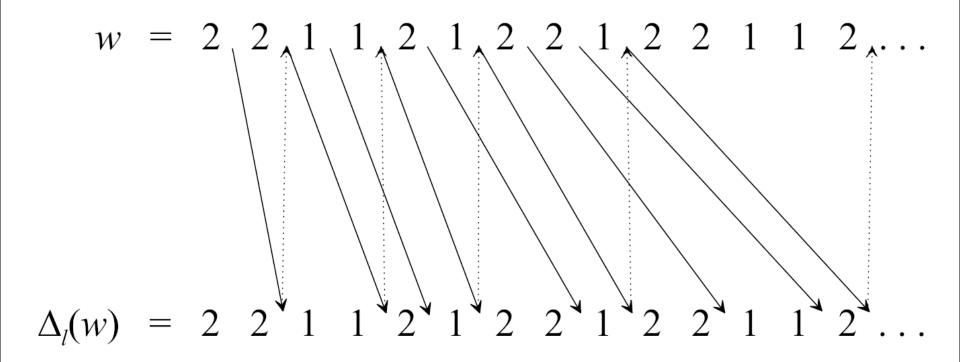
The run-length encoding operator

$$\Delta_l: \{1,2\}^\omega \to \mathbf{N}^\omega$$

$$w = \begin{cases} 1^{k_1} 2^{k_2} 1^{k_3} 2^{k_4} \cdots, & \text{if } w \in 1 \cdot \{1, 2\}^{\omega} \\ 2^{k_1} 1^{k_2} 2^{k_3} 1^{k_4} \cdots, & \text{if } w \in 2 \cdot \{1, 2\}^{\omega} \end{cases}$$
$$\Delta_l(w) = k_1 k_2 k_3 \cdots$$

Hanna Uscka-Wehlou

The Kolakoski word



Hanna Uscka-Wehlou

Digital lines...

$$D_{R'}(y = ax, x > 0) = \{(k, \lceil ak \rceil); k \in \mathbb{N}^+\}$$

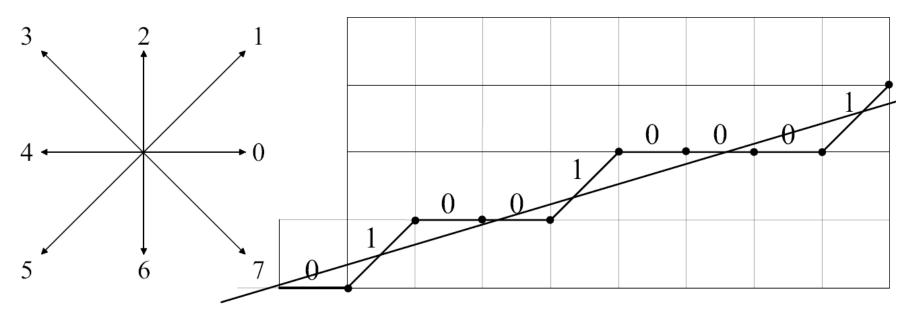
...and binary words

$$s'(a): \mathbf{N} \to \{0, 1\}$$

 $\forall n \in \mathbf{N} \quad s'_n(a) = \lceil a(n+1) \rceil - \lceil an \rceil$

Hanna Uscka-Wehlou

The Freeman code



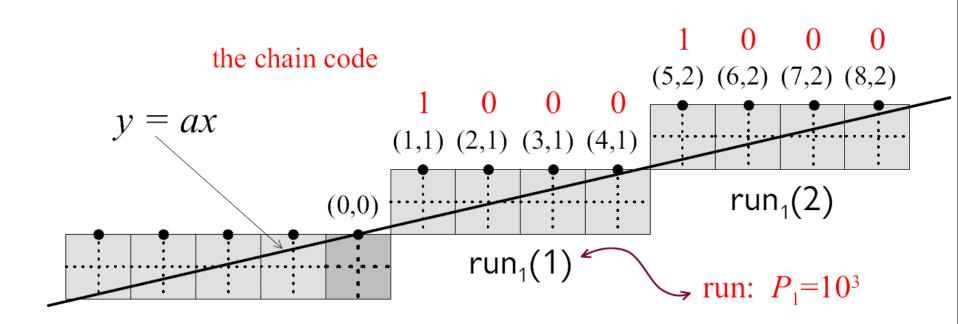
the chain code: ... 010010001 ...

Freeman's notion of balance

(F3) successive occurrences of the element occurring singly are as uniformly spaced as possible.

Hanna Uscka-Wehlou

Rosenfeld and his runs



Hanna Uscka-Wehlou

Rosenfeld and his runs

Two run lengths on level 1: $runs_1 S_1 = 10^m$ and $L_1 = 10^{m+1}$

Two run lengths on level 2: $\operatorname{runs}_2 S_2 = S_1 L_1^k$ and $L_2 = S_1 L_1^{k+1}$

or
$$S_2 = S_1^k L_1$$
 and $L_2 = S_1^{k+1} L_1$

Two run lengths on level n: runs_n $S_n = S_{n-1} L_{n-1}^{l}$ and $L_n = S_{n-1} L_{n-1}^{l+1}$

or
$$S_n = S_{n-1}^{l} L_{n-1}$$
 and $L_n = S_{n-1}^{l+1} L_{n-1}$

or
$$S_n = L_{n-1} S_{n-1}^{l}$$
 and $L_n = L_{n-1} S_{n-1}^{l+1}$

or
$$S_n = L_{n-1}^{l} S_{n-1}$$
 and $L_n = L_{n-1}^{l+1} S_{n-1}$

Hanna Uscka-Wehlou

Three questions. About:

the run length on level n

the main run on level n-1

the first run on level n-1

Hanna Uscka-Wehlou

$$a = [0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \dots]$$

 $i_a : \mathbf{N}^+ \to \mathbf{N}^+$

$$i_a(1) = 1, i_a(2) = 2, \text{ for } n \ge 2$$
:
 $i_a(n+1) = i_a(n) + 1 + \delta_1(a_{i_a(n)})$

Hanna Uscka-Wehlou

$$a = [0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \dots]$$

 $i_a : \mathbf{N}^+ \to \mathbf{N}^+$

$$i_a(1) = 1$$
, $i_a(2) = 2$, for $n \ge 2$:
 $i_a(n+1) = i_a(n) + 1 + \delta_1(a_{i_a(n)})$

Hanna Uscka-Wehlou

$$a = [0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \dots]$$

 $i_a : \mathbf{N}^+ \to \mathbf{N}^+$

$$i_a(1) = 1$$
, $i_a(2) = 2$, for $n \ge 2$:
 $i_a(n+1) = i_a(n) + 1 + \delta_1(a_{i_a(n)})$

Hanna Uscka-Wehlou

$$a = [0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \dots]$$

 $i_a : \mathbf{N}^+ \to \mathbf{N}^+$

$$i_a(1) = 1$$
, $i_a(2) = 2$, for $n \ge 2$:
 $i_a(n+1) = i_a(n) + 1 + \delta_1(a_{i_a(n)})$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = \sum_{k=1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$(a_{i_a(k)} = 1) \Rightarrow S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$(a_{i_a(k)} = 1) \Rightarrow S_k = (L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$(a_{i_a(k)} \ge 2) \Rightarrow S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$(a_{i_a(k)} \ge 2) \Rightarrow S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1}$, $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}$.

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou

The slope of the line (upper mech. word) is $a = [0; a_1, a_2, a_3, \dots]$

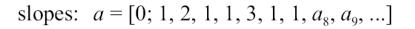
$$S_1 = 10^{a_1-1}$$
, $L_1 = 10^{a_1}$, and, for $k \ge 2$:

$$a_{i_a(k)} \ge 2 \implies S_k = S_{k-1}^{a_{i_a(k)}-1} L_{k-1} \text{ (or } L_{k-1} S_{k-1}^{a_{i_a(k)}-1}),$$

$$a_{i_a(k)} = 1 \implies S_k = L_{k-1}^{a_{i_a(k)+1}} S_{k-1} \text{ (or } S_{k-1} L_{k-1}^{a_{i_a(k)+1}}),$$

$$i_a(k)$$
 is even \Rightarrow $P_{k-1} = S_{k-1},$ $i_a(k)$ is odd \Rightarrow $P_{k-1} = L_{k-1}.$

Hanna Uscka-Wehlou



 P_n - n^{th} prefix according to the run hierarchy

 S_n - short run of level n

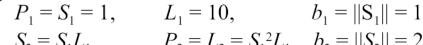
 L_n - long run of level n

$$i_a(1) = 1$$
, $i_a(2) = 2$, $i_a(3) = 3$,

 $i_a(4) = 5$, $i_a(5) = 6$, $i_a(6) = 8$, ...

Essential 1's: a_3 , a_6

non-essential 1's: a_1 , a_4 , a_7



$$S_2 = S_1 L_1,$$
 $P_2 = L_2 = S_1^2 L_1,$ $b_2 = ||S_2|| = 2$

$$S_3 = L_2 S_2$$
, $P_3 = L_3 = L_2^2 S_2$, $P_3 = ||S_3|| = 1+1$

$$L_4 = L_3 S_3^3$$
,

$$L_5 = S_4 L_4^2,$$

$$b_1 = ||S_1|| = 1$$

$$b_2 = ||S_2|| = 2$$

$$b_3 = ||S_3|| = 1 + 1$$

$$P_4 = S_4 = L_3 S_3^2$$
, $L_4 = L_3 S_3^3$, $b_4 = ||S_4|| = 3$

$$P_5 = S_5 = S_4 L_4$$
, $L_5 = S_4 L_4^2$, $b_5 = ||S_5|| = 1 + 1$

Hanna Uscka-Wehlou

k	$a_{i_a(k+1)} = 1?$	\min_k	$i_a(k+1)$	b_k	prefix P_k of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	1	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$i_a(k+1)$	b_k	prefix P_k of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	1	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$i_a(k+1)$	b_k	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	1	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$(i_a(k+1))$	b_k	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	1	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$(i_a(k+1))$	b_k	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	1	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$i_a(k+1)$	(b_k)	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	\vdash	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	-2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$i_a(k+1)$	(b_k)	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even)—	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	-2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even	3	$S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	-2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

(k)	$a_{i_a(k+1)} = 1?$	main_k	$(i_a(k+1))$	b_k	$\operatorname{prefix}(P_k)$ of $s'(a)$
1	$a_{i_a(2)} = a_2 = 2 \ge 2$	S_1	even	Ι	$S_1 = 1$
2	$a_{i_a(3)} = a_3 = 1$	L_2	odd	2	$L_2 = S_1^2 L_1 = 1110$
3	$a_{i_a(4)} = a_5 = 3 \ge 2$	S_3	odd	2	$L_3 = L_2^2 S_2$
4	$a_{i_a(5)} = a_6 = 1$	L_4	even)ಯ($S_4 = L_3 S_3^2$
5	$a_{i_a(6)} = a_8 \ge 2$	S_5	even	2	$S_5 = S_4 L_4$
6	$a_{i_a(7)} = a_9 \ge 2$	S_6	odd	a_8	$L_6 = S_5^{a_8} L_5$

Hanna Uscka-Wehlou

Two equivalence relations on the set of slopes

1. based on run length on all levels for s'(a):

$$a \in [(b_1, b_2, b_3, \dots)]_{\sim_{\text{len}}} \Leftrightarrow$$

$$\forall k \in \mathbf{N}^+ ||S_k|| = b_k$$

2. based on run construction on all levels for s'(a):

$$a \sim_{\text{con}} a' \Leftrightarrow i_a \equiv i_{a'}$$

Hanna Uscka-Wehlou

The constructional word $\gamma(a) \in \{0,1\}^{\omega}$

Let
$$a = [0; a_1, a_2, \ldots]$$
. For $n \in \mathbf{N}^+$:

$$\gamma_n(a) = i_a(n+2) - i_a(n+1) - 1$$

$$\gamma_n(a) = \delta_1(a_{i_a(n+1)})$$

$$\gamma_n(a) = \begin{cases} 0, & S_n \text{ is the most frequent} \\ & \text{run on level } n \text{ for } s'(a) \\ 1, & L_n \text{ is the most frequent} \\ & \text{run on level } n \text{ for } s'(a). \end{cases}$$

Hanna Uscka-Wehlou

The constructional word $\gamma(a) \in \{0,1\}^{\omega}$

Let
$$a = [0; a_1, a_2, \ldots]$$
. For $n \in \mathbf{N}^+$:

$$\gamma_n(a) = i_a(n+2) - i_a(n+1) - 1$$

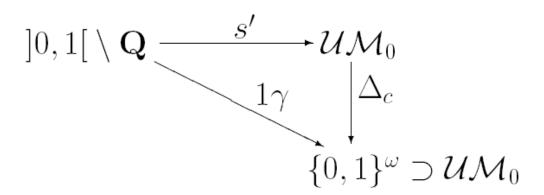
$$\gamma_n(a) = \delta_1(a_{i_a(n+1)})$$

$$\gamma_n(a) = \begin{cases} 0, & S_n \text{ is the most frequent} \\ & \text{run on level } n \text{ for } s'(a) \\ 1, & L_n \text{ is the most frequent} \\ & \text{run on level } n \text{ for } s'(a). \end{cases}$$

Hanna Uscka-Wehlou

Definition The run-construction encoding operator

 $\Delta_c: \mathcal{UM}_0 \longrightarrow \{0,1\}^{\omega} \text{ is defined as } \Delta_c = (1\gamma) \circ (s')^{-1}.$



where \mathcal{UM}_0 denotes the set of all upper mechanical words with irrational slope 0 < a < 1 and with intercept 0.

Hanna Uscka-Wehlou

Let
$$a \in]0,1[\setminus \mathbf{Q}$$
. The word $s'(a) = 1c(a)$ has

balanced construction if

$$\exists \ \alpha \in \mathbf{R} \quad \gamma(a) = c(\alpha)$$

Sturmian-balanced construction if

$$\exists \alpha \in]0,1[\setminus \mathbf{Q} \quad \gamma(a) = c(\alpha)$$

<u>self-balanced</u> construction

$$1\gamma(a) = \Delta_c(1c(a)) = 1c(a)$$

Hanna Uscka-Wehlou

Let
$$(b_n)_{n \in \mathbf{N}^+}$$
 be such that $b_1 \in \mathbf{N}^+$
and $b_n \in \mathbf{N}^+ \setminus \{1\}$ for all $n \geq 2$. Then
$$\exists_{a \in]0,1[\setminus \mathbf{Q}}^1$$
$$a \in [(b_n)_{n \in \mathbf{N}^+}]_{\sim_{\text{len}}} \land s'(a) = \Delta_c(s'(a)).$$

Hanna Uscka-Wehlou

Let
$$(b_n)_{n \in \mathbb{N}^+}$$
 be such that $b_1 \in \mathbb{N}^+$ and $b_n \in \mathbb{N}^+ \setminus \{1\}$ for all $n \geq 2$. Then
$$\exists_{a \in]0,1[\setminus \mathbf{Q}}^1$$
$$a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim_{\text{len}}} \land s'(a) = \Delta_c(s'(a)).$$

Hanna Uscka-Wehlou

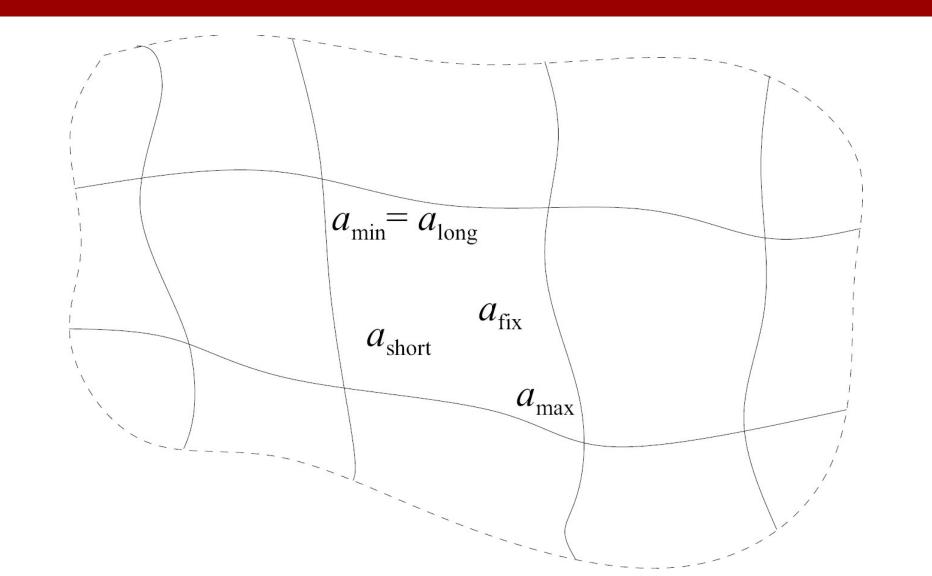
Let
$$(b_n)_{n \in \mathbf{N}^+}$$
 be such that $b_1 \in \mathbf{N}^+$ and $b_n \in \mathbf{N}^+ \setminus \{1\}$ for all $n \geq 2$. Then $\exists_{a \in]0,1[\setminus \mathbf{Q}}^1$

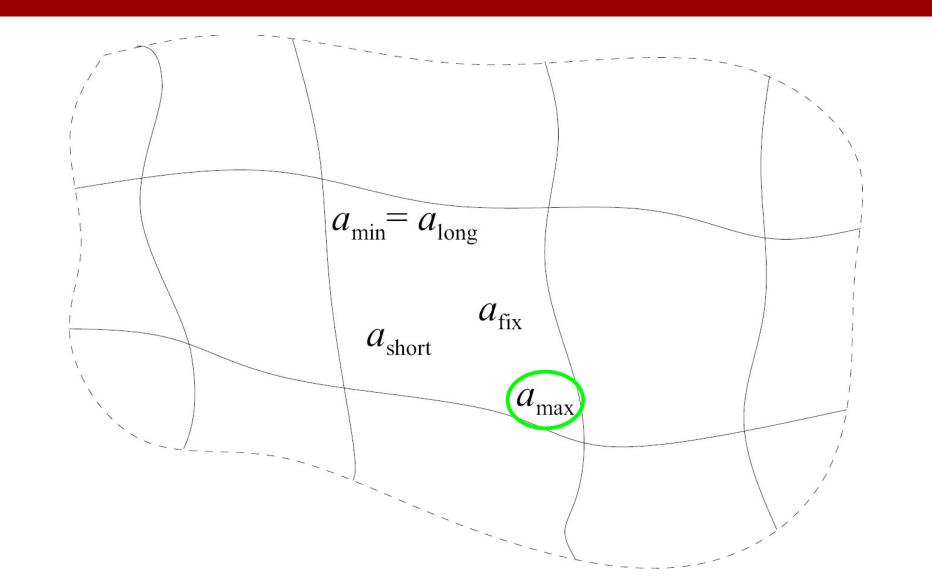
$$a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim_{\text{len}}} \land s'(a) = \Delta_c(s'(a)).$$

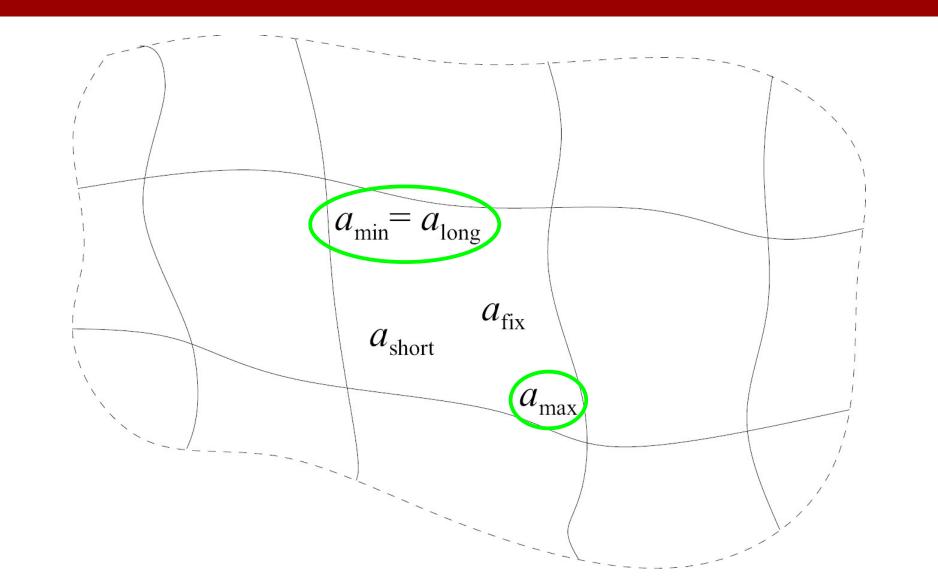
Hanna Uscka-Wehlou

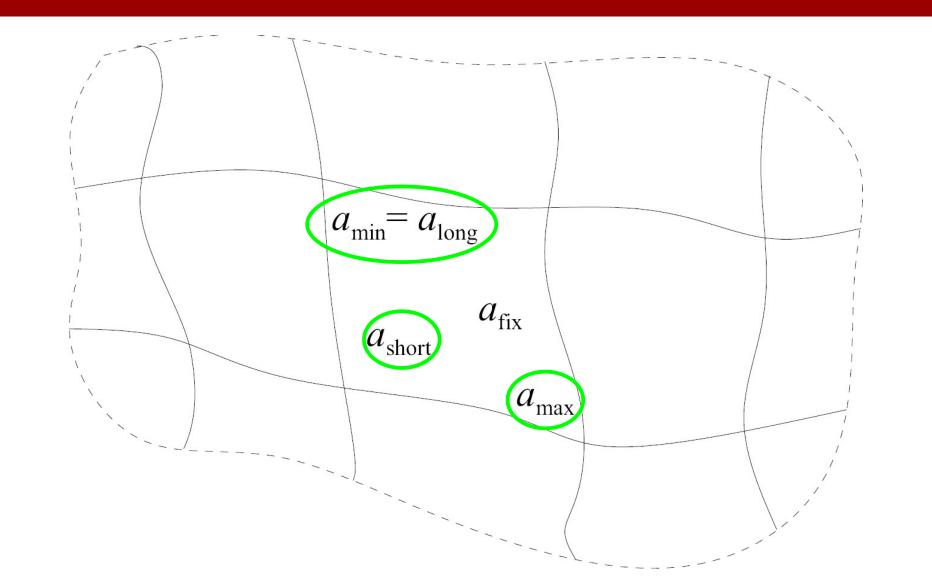
Let
$$(b_n)_{n \in \mathbf{N}^+}$$
 be such that $b_1 \in \mathbf{N}^+$ and $b_n \in \mathbf{N}^+ \setminus \{1\}$ for all $n \geq 2$. Then
$$\exists_{a \in]0,1[\setminus \mathbf{Q}]}^1$$

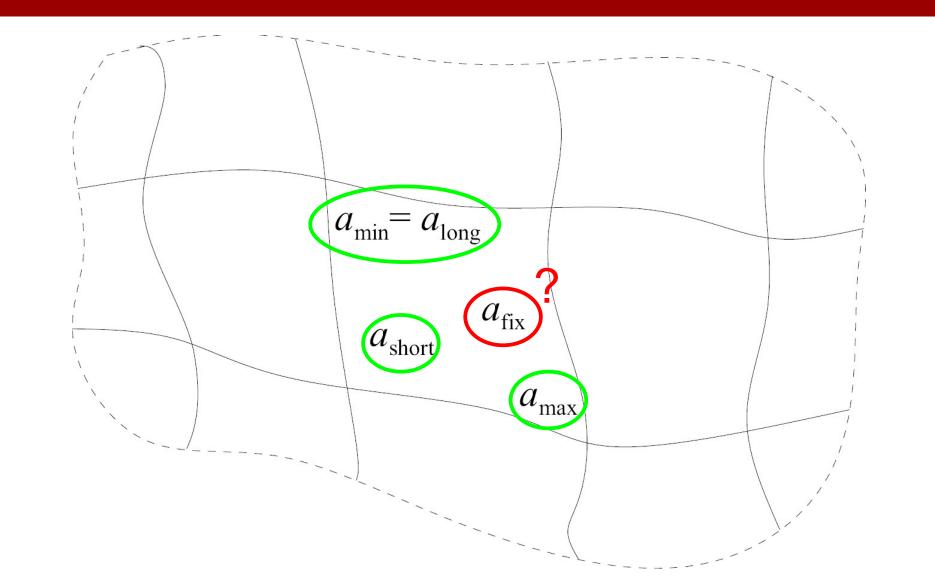
$$a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim_{\text{len}}} \land \underline{s'(a)} = \Delta_c(s'(a)).$$











Hanna Uscka-Wehlou

Theorem Let $Fix(\Delta_c) \subset \mathcal{UM}_0$ denote the set of all fixed points of Δ_c . Then:

- 1. Fix(Δ_c) $\subset s'(]0, \frac{2}{3}[\\mathbf{Q})$; numbers 0 and $\frac{2}{3}$ are accumulation points of $(s')^{-1}(\text{Fix}(\Delta_c))$.
- 2. $\operatorname{card}(\operatorname{Fix}(\Delta_c))$ is equal to that of the continuum.

Hanna Uscka-Wehlou

Ph.D. Thesis (to be defended in 8 days!):

Digital lines, Sturmian words, and continued fractions

