Continued Fractions & Digital Lines

Hanna Uscka-Wehlou

Sweden, Uppsala University, Department of Mathematics

We present a new, continued fraction based, recursive description of digital half lines $y = ax, x > 0$ for irrational a from the interval $]0,1[$. The description reflects the hierarchy of runs.

Continued fractions. Positive integers $a_1, a_2, ...$ are the continued fraction elements of a, if

$$a = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}} \text{ def. } [0; a_1, a_2, a_3, \ldots].$$

The denominators of the convergents of the continued fraction expansion of a: $q_0 = 1$, $q_1 = a_1$, and, for $n \geq 2$, $q_n = a_n q_{n-1} + q_{n-2}$

The index jump function

For the slope $a = [0; a_1, a_2, a_3, \ldots]$, the index jump function is

$$\delta_i(x) = \begin{cases} 1, & x = 1 \\ 0, & x \neq 1. \end{cases}$$

An example how it works for the lines like on the picture.

The last row shows the first 12 elements of the sequence of the values of the index jump function.

Run hierarchic description in terms of long and short runs on all the digitization levels. Expressed by the index jump function. Illustrated on the picture.

Sequences (b_i) of length specification define a quantitative equivalence relation LENGTH.

The places of essential 1’s define a qualitative equivalence relation CONSTRUCTION. FIBONACCI numbers and THE GOLDEN SECTION

Two kinds of run length

1. $|S_n|, |L_n|$ - the number of pixels contained in S_n, L_n respectively.

2. $||S_n||, ||L_n||$ - the number of runs contained in S_n, L_n.

The pixel-wise length of runs

Expressed by means of the denominators of the convergents and the index jump function. The number of pixels in the line segment $y = ax, x > 0$, achieved in the n^{th} step:

$$|S_n| = q_{i_{a(n-1)+1}}, |L_n| = q_{i_{a(n+1)+1}} + q_{i_{a(n-1)+2}}$$

The cardinality of runs

Calculated according to the following formula:

$$||S_n|| = b_n + a_{i_{a(n)}} + \delta_1(a_{i_{a(n)}}) \cdot a_{i_{a(n)+1}}$$

1. Continued Fractions and Digital Lines with Irrational Slopes (the DGCI 2008 paper)
2. A New Description of Upper Mechanical Words with Irrational Slopes Using Continued Fractions (submitted in March 2008)