Some combinatorial problems related to digital straight lines with irrational slopes and to balanced aperiodic words
Some combinatorial problems related to digital straight lines with irrational slopes and to balanced aperiodic words.
Hanna Uscka-Wehlou

Some combinatorial problems related to digital straight lines with irrational slopes and to balanced aperiodic words

KTH, 2 December 2009
Items:

Mechanical words and digital lines

A short introduction to continued fractions

Some combinatorics on continued fraction elements

Questions and problems
Items:

Mechanical words and digital lines

A short introduction to continued fractions

Some combinatorics on continued fraction elements

Questions and problems
Words and lines
1.1 Words
Finite words

\(A \) - alphabet (a set of symbols)

\(A^* \) - the set of finite words over \(A \)

\((A^*, +) \) - is a monoid:
- concatenation \((+\) is associative \((u+v)+w=u+(v+w) \)

 \[
 101010+1111=1010101111
 \]
- the empty word \(\varepsilon \) is the neutral element

\((A^*, +) \) is called the free monoid on the set \(A \).

- no inverse operation, no commutativity
Infinite words

\(A \) - alphabet (a set of symbols)

\(A^\omega \) - the set of right infinite words over \(A \)

For example, if \(A=\{1,2\} \), then the words are:

\[
\begin{align*}
 w &: \mathbb{N}^+ \rightarrow \{1, 2\} \\
 w &= w(1)w(2)w(3) \cdots \in \{1, 2\}^\omega
\end{align*}
\]
The word w is called a factor of a word u if there exist words x, y such that $u = x + w + y$.

1222 is a factor of 000122211113213110101001

10101 is a factor of 10101010101010101

ABCDA is a factor of CBBBDACADBCAABCDA

10101 is a factor of 10101
Sturmian words are infinite words which have exactly $m+1$ different factors of length m for every natural m.
Sturmian words are infinite words which have exactly $m+1$ different factors of length m for every natural m.

$m=1 \quad \rightarrow \quad$ two letters (binary words)
Sturmian words are infinite words which have exactly $m+1$ different factors of length m for every natural m.

$m=1 \quad \rightarrow \quad$ two letters (binary words)

101010010100101001010010100101001010010100...
Sturmian words are infinite words which have exactly $m+1$ different factors of length m for every natural m.

$m=1$ → two letters (binary words)

10101001010100101001010010101001010010100 ...

$m=4$

1010, 0101, 0010, 1001, 0100.
Sturmian words are infinite words which have exactly \(m+1 \) different factors of length \(m \) for every natural \(m \).

\[m=1 \quad \rightarrow \quad \text{two letters (binary words)} \]

1001010010101001010010101001010010101001010010101001010010100 \ldots

\[m=4 \]

1010, 0101, 0010, 1001, 0100.
Sturmian words are infinite words which have exactly \(m+1 \) different factors of length \(m \) for every natural \(m \).

\[
m=1 \quad \rightarrow \quad \text{two letters (binary words)}
\]

10101001010010101001010010101001010010100 \ldots

\[
m=4
\]

1010, 0101, \text{0010, 1001, 0100}.\]
Balanced words (binary)

\(n \) - the length of the word

\(m \) - any positive natural number less than \(n \)

Each \(m \)-letter long factor of this word can contain either \(k \) or \(k+1 \) 1's

An example:

\(n = 41 \)

\(m = 16 \)

\[
10101001010010101001010010101001010010100
\]

\(k = 6 \)

\(7 \)

\(6 \)
Balanced words give straight lines
Upper and lower mechanical, characteristic words

\[s'(a), s(a): \mathbb{N} \rightarrow \{0, 1\} \]

\[\forall n \in \mathbb{N} \quad s'_n(a) = \left[a(n + 1) \right] - \left[an \right], \]

\[s_n(a) = \left[a(n + 1) \right] - \left[an \right] \]

\[c(a): \mathbb{N}^{+} \rightarrow \{0, 1\} \]

\[\forall n \in \mathbb{N}^{+} \quad c_n(a) = \left[a(n + 1) \right] - \left[an \right] \]
Theorem Let s be an infinite word. The following are equivalent:

- s is Sturmian;
- s is balanced and aperiodic;
- s is irrational (lower or upper) mechanical.
1.2

Lines
Digital geometry – R'-digitization
Digital geometry - R'-digitization
The arithmetical expression of the R'-digitization of the line $y = ax$ for irrational positive a less than 1:

$$D_{R'}(y = ax) = \{(k, \lfloor ak \rfloor) ; \ k \in \mathbb{Z}\}$$
The R'-digital line $y = ax$ with irrational slope

$a = [\, 0 ; a_1, a_2, \ldots \,]$

Points on the line:
- $(0,0)$
- $(1, \lceil a \rceil)$
- $(2, \lceil 2a \rceil)$
- $(3, \lceil 3a \rceil)$
- $(4, \lceil 4a \rceil)$
- $(5, \lceil 5a \rceil)$
- $(6, \lceil 6a \rceil)$
- $(7, \lceil 7a \rceil)$

Graphical representation of the line $y = ax$.
Digital geometry – straight lines and mechanical words

The \mathbb{R}'-digital line $y = ax$ with slope $a = [0; a_1, a_2, ...]$ and the corresponding upper mechanical word $s'(a)$:

\[
s'(a) = 10010010010001... \]

\[
\begin{align*}
\lfloor 4a \rfloor - \lfloor 3a \rfloor &= 1 \\
\lfloor 3a \rfloor - \lfloor 2a \rfloor &= 0 \\
\lfloor 2a \rfloor - \lfloor a \rfloor &= 0 \\
1 - 0 &= 1
\end{align*}
\]

\[
\begin{align*}
\lfloor 5a \rfloor - \lfloor 4a \rfloor &= 0 \\
\lfloor 6a \rfloor - \lfloor 5a \rfloor &= 1 \\
\lfloor 7a \rfloor - \lfloor 6a \rfloor &= 0 \\
\lfloor 8a \rfloor - \lfloor 7a \rfloor &= 1 \\
\lfloor 9a \rfloor - \lfloor 8a \rfloor &= 0 \\
\lfloor 10a \rfloor - \lfloor 9a \rfloor &= 1
\end{align*}
\]
Digital geometry - the concept of run

$y = ax$

the chain code

run$_1$(1)

run$_1$(2)

run: $P_1 = 10^3$
Digital geometry – the concept of run

\(P_n \) - the \(n^{th} \) prefix according to the run hierarchy

\(S_n \) - short run of level \(n \)

\(L_n \) - long run of level \(n \)

\[
\begin{align*}
P_1 &= S_1 = 1, & L_1 &= 10 \\
S_2 &= S_1 L_1, & P_2 &= L_2 = S_1^2 L_1 \\
S_3 &= L_2 S_2, & P_3 &= L_3 = L_2^2 S_2 \\
P_4 &= S_4 = L_3 S_3^2, & L_4 &= L_3 S_3^3 \\
P_5 &= S_5 = S_4 L_4, & L_5 &= S_4 L_4^2
\end{align*}
\]

\[
\frac{41}{57} = [0; 1, 2, 1, 1, 3, 1, 1]
\]

\[
\begin{align*}
P_5 &= S_5 = S_4 L_4 = (L_3 S_3^2)(L_3 S_3^3) = (L_2^2 S_2)(L_2 S_2)^2(L_2^2 S_2)(L_2 S_2)^3 \\
&= (S_1^2 L_1)^2 S_1 L_1 (S_1^2 L_1 S_1 L_1)^2 (S_1^2 L_1)^2 S_1 L_1 (S_1^2 L_1 S_1 L_1)^3 \\
&= (1110)^2 110 (1110110)^2 (1110)^2 110 (1110110)^3
\end{align*}
\]
Digital geometry - the concept of run

Two run lengths on level 1: runs\(_1\) \(S_1=10^m\) and \(L_1=10^{m+1}\)

\[
\begin{array}{cccccccccc}
& & S_1 & & L_1 & & & & & \\
& & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Two run lengths on level 2: runs\(_2\) \(S_2=S_1L_1^k\) and \(L_2=S_1L_1^{k+1}\)

or \(S_2=S_1^kL_1\) and \(L_2=S_1^{k+1}L_1\)

Two run lengths on level \(n\): runs\(_n\) \(S_n=S_{n-1}L_{n-1}^l\) and \(L_n=S_{n-1}L_{n-1}^{l+1}\)

or \(S_n=S_{n-1}^lL_{n-1}\) and \(L_n=S_{n-1}^{l+1}L_{n-1}\)

or \(S_n=L_{n-1}S_{n-1}^l\) and \(L_n=L_{n-1}S_{n-1}^{l+1}\)

or \(S_n=L_{n-1}^lS_{n-1}\) and \(L_n=L_{n-1}^{l+1}S_{n-1}\)
Hierarchy of runs - runs on level $k+1$

$$L_k S^m_k \quad S^m_k L_k \quad L^m_k S_k \quad S_k L^m_k$$
Hierarchy of runs

Three questions. About:

the run length on level $k+1$

the main run on level k

the first run on level k
Continued fractions
Continued fractions - notation

\[a = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}} = [0; a_1, a_2, a_3, \ldots] \]
Continued fractions - the CF-elements

\[\frac{1}{a} = \left[\frac{1}{a} \right] + \frac{\frac{1}{a}}{1} = \left[\frac{1}{a} \right] + \frac{1}{\left[\frac{1}{\frac{1}{a}} \right]} + \frac{1}{\left[\frac{1}{\frac{1}{\frac{1}{a}}} \right]} \]

\[a_1 \quad a_2 \]
Continued fractions - a definition

\[a = [a_0; a_1, a_2, a_3, \ldots] \]

\[\alpha_0 = a; \quad \text{for} \quad n \geq 0 : \]

\[a_n = \lfloor \alpha_n \rfloor, \quad \alpha_{n+1} = \frac{1}{\alpha_n - a_n} = \frac{1}{\text{frac}(\alpha_n)} \]
Continued fractions – an example

$$\frac{13}{41} = \frac{1}{\frac{41}{13}} = \frac{1}{3 + \frac{2}{13}} = \frac{1}{3 + \frac{1}{\frac{13}{2}}}$$

$$\frac{1}{3 + \frac{1}{6 + \frac{1}{2}}} = [0; 3, 6, 2].$$
Continued fractions and decimal expansions

\[0.1111 \cdots = \frac{1}{9} = [0; 9] \]

\[[0; 1, 1, 1, \ldots] = \frac{\sqrt{5} - 1}{2} = 0.6180339887\ldots \]
The CF-expansion of α is periodic

α is a quadratic surd
... is an algebraic number of the second degree, i.e.:

is irrational and is a root of some equation

\[a_2 x^2 + a_1 x + a_0 = 0 \]

with integer coefficients.

\[\frac{\sqrt{5} - 1}{2} \] is a root of \[x^2 + x - 1 = 0 \]
Periodicity of continued fractions

\[[0; 1, 1, 1, 1, \ldots] = ? \]

\[x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} \]
Periodicity of continued fractions

\[[0; 1, 1, 1, 1, \ldots] = ? \]

\[x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} \]
Periodicity of continued fractions

\[[0; 1, 1, 1, 1, \ldots] = \, ? \]

\[x = \frac{1}{\frac{1}{1 + \frac{1}{\frac{1}{1 + \ldots}}} + x} = \frac{1}{1 + x} \]
Periodicity of continued fractions

\[[0; 1, 1, 1, 1, \ldots] = ? \]

\[
x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} = \frac{1}{1 + x}
\]

\[x = \frac{1}{1 + x} \iff x^2 + x - 1 = 0 \]
Periodicity of continued fractions

\[[0; 1, 1, 1, 1, \ldots] = \frac{\sqrt{5} - 1}{2} \]

\[x = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} = \frac{1}{1 + x} \]

\[x = \frac{1}{1 + x} \iff x^2 + x - 1 = 0 \]
The CF-expansion of α is periodic

Euler 1737

α is a quadratic surd
The CF-expansion of α is periodic

α is a quadratic surd

Lagrange 1770

Euler 1737
Continued fractions and decimal expansions

<table>
<thead>
<tr>
<th></th>
<th>CF-expansion</th>
<th>decimal expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite</td>
<td>rational</td>
<td>rational</td>
</tr>
<tr>
<td>infinite</td>
<td>irrational</td>
<td>rational</td>
</tr>
<tr>
<td>periodic</td>
<td>irrational (quadratic surd)</td>
<td>rational</td>
</tr>
<tr>
<td>aperiodic</td>
<td>irrational (no quadratic surd)</td>
<td>irrational</td>
</tr>
</tbody>
</table>
Continued fractions – periodic patterns
(Euler 1737)

\[e - 2 = \left[0; 1, 2, 1, 1, 4, 1, 1, 6, 1, \ldots, 1, 2k, 1, \ldots \right] \]
Continued fractions - periodic patterns
(Euler 1737)

\[e - 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, \ldots , 1, 2k, 1, \ldots] \]
Continued fractions – periodic patterns
(Euler 1737)

\[e - 2 = [0; \underbrace{1, 2, 1, 1, 4, 1, 1, 6, 1, \ldots}, \underbrace{1, 2k, 1, \ldots}] \]

\[= [0; \overbrace{1, 2k, 1}^k_{k=1}]^{\infty} \]
Continued fractions - periodic patterns
(Euler 1737)

\[e - 2 = \left[0; 1, 2, 1, 1, 4, 1, 1, 6, 1, \ldots, 1, 2k, 1, \ldots \right] \]

\[= \left[0; \overline{1, 2k, 1} \right]_{k=1}^{\infty} \]

for \(k \geq 2 \)

\[\sqrt[n]{e} - 1 = \left[0; \overline{(2k - 1)n - 1, 1, 1} \right]_{k=1}^{\infty} \]
for $k \geq 2$

$$\tan(1/k) = [0; k-1, 1, (2n + 1)k - 2]_{n=1}^{\infty}$$
Continued fractions – periodic patterns

(Lambert 1761)

for $k \geq 2$

$$\tan(1/k) = [0; k-1, 1, (2n + 1)k - 2]_{n=1}^{\infty}$$

$$\tan(1/2) = [0; 1, 1, 4, 1, 8, 1, 12, 1, 16, \ldots]$$
Combinatorics on CFs
Important issues

Two equivalence relations on the set of slopes

A new fixed point theorem for words
Important issues

Two equivalence relations on the set of slopes

A new fixed point theorem for words

A new CF-description (essential 1's, run hierarchy)
Two equivalence relations on the set of slopes

A new CF-description (essential 1's, run hierarchy)
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_11, a_12, 1, 1, 1, a_16, a_17, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = \left[0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(b_k)_{k=1}^{\infty} = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[
a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots]
\]

\[
(b_k)_{k=1}^\infty = (1, a_2, \ldots)
\]

\[
(b_k)_{k=1}^\infty = (b_1, b_2, \ldots)
\]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^{\infty} = (1, a_2, 1 + 1) \]

\[(b_k)_{k=1}^{\infty} = (b_1, b_2, b_3, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 _+ 1, a_5) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1, a_5, 1, a_8, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = \left[0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(b_k)_{k=1}^{\infty} = (1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots) \]

\[(b_k)_{k=1}^{\infty} = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = \left[0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[
a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots]
\]

\[
(b_k)_{k=1}^\infty = (1, a_2, 1 \oplus 1, a_5, 1 \oplus 1, a_8, a_9, 1 \oplus a_{11}, a_{12}, 1 \oplus 1, \ldots)
\]

\[
(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, \ldots)
\]
An informal introduction to the equivalence relations on CFs

\[
\alpha = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots]
\]

\[
(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}, 1 + 1, 1 + a_{16},
\]

\[
(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11},
\]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}, 1 + 1, 1 + a_{16}, a_{17}, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, \ldots) \]
An informal introduction to the equivalence relations on CFs

\[a = \left[0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(b_k)_{k=1}^{\infty} = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}, 1 + 1, 1 + a_{16}, a_{17}, \ldots) \]

\[(b_k)_{k=1}^{\infty} = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, \ldots) \]

\[a' = \left[0; 1, 1, a_2 - 1, 2, a_5, 1, 1, 1, a_8 - 1, a_9, a_{11} + 1, 1, a_{12} - 1, 2, 1, a_{16}, a_{17}, \ldots \right] \]
An informal introduction to the equivalence relations on CFs

\[a = [0; 1, a_2, 1, 1, a_5, 1, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}, 1 + 1, 1 + a_{16}, a_{17}, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, \ldots) \]

\[a' = [0; 1, 1, a_2 - 1, 2, a_5, 1, 1, a_8 - 1, a_9, a_{11} + 1, 1, a_{12} - 1, 2, 1, a_{16}, a_{17}, \ldots] \]
An informal introduction to the equivalence relations on CFs

\[a = \left[0; 1, a_2, 1, a_5, 1, a_8, a_9, 1, a_{11}, a_{12}, 1, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(b_k)_{k=1}^\infty = (1, a_2, 1 + 1, a_5, 1 + 1, a_8, a_9, 1 + a_{11}, a_{12}, 1 + 1, 1 + a_{16}, a_{17}, \ldots) \]

\[(b_k)_{k=1}^\infty = (b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_{10}, b_{11}, b_{12}, \ldots) \]

\[(s_k)_{k \in I} = (3, 6, 10, 13, 15, \ldots) \]
The index jump function

\[a = [0; a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots] \]

\[i_a : \mathbb{N}^+ \rightarrow \mathbb{N}^+ \]

\[i_a(1) = 1, \quad i_a(2) = 2, \quad \text{for } n \geq 2: \]

\[i_a(n + 1) = i_a(n) + 1 + \delta_1(a_{i_a(n)}) \]
The index jump function: an example

\[a = [0; \begin{array}{c} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \\ b_8 \\ a_{11} \\ a_{12} \\ \end{array}, \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}, a_{16}, a_{17}, \ldots] \]

\[(i_{a(k)})_{k\in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots) \]

An essential 1 is a CF-element equal to 1 and indexed by a value of the index jump function.
The index jump function - properties

Its values are positive integers

The function is increasing

For each slope a and for each positive integer n

$$i_a(n + 1) - i_a(n) = 1 \quad \text{or} \quad i_a(n + 1) - i_a(n) = 2$$
$y = 2x - 2$

$y = x$
\[y = 2x - 2 \]
\[y = x \]
\[(i_a(n))_{n=1}^{10} = (1, 2, 4, 5, 6, 7, 9, 10, 12, 14)\]
\(a = [0; a_1, 1, a_3, a_4, a_5, a_6, 1, a_8, a_9, 1, a_{11}, 1, a_{13}, a_{14}, \ldots] \)

\[
\left(i_{a(n)} \right)_{n=1}^{10} = (1, 2, 4, 5, 6, 7, 9, 10, 12, 14)
\]

\(y = 2x - 2 \)

\(y = x \)
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of run$_{k+1}$

\[a_{i_a(k+1)} \]

\[
L_k S_k^m \quad S_k^m L_k \quad L_k^m S_k \quad S_k L_k^m
\]

\[i_a(k + 1) \]
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of run_{k+1}.
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of run_{k+1}
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of run$_{k+1}$
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of r_{n+1}

$m = a_{i_a(k+1)} - 1$

or

$m = a_{i_a(k+1)}$

$a_{i_a(k+1)}$

$m = a_{i_a(k+1)} + 1$

or

$m = a_{i_a(k+1)} + 1$

$L_k S^m_k$

$L_k^m S_k$

$L_k S^m_k$

$L_k^m S_k$

$i_a(k + 1)$
How $i_a(k+1)$ and $a_{i_a(k+1)}$ describe the form of $i_a(k+1)$.

$m = a_{i_a(k+1)} - 1$

Or $m = a_{i_a(k+1)}$

If $m > 1$:

$L_k S_k^m$

If $m = 1$:

$S_k^m L_k$

$m = a_{i_a(k+1)} + 1$

Or $m = a_{i_a(k+1)} + 1 + 1$

$i_a(k+1)$
The sequence of length specification for a

\[b_1 = a_1 \quad \text{and, for} \quad n \geq 2: \]

\[b_n = \begin{cases}
 a_{i_a}(n), & \text{if } a_{i_a}(n) \neq 1 \\
 1 + a_{i_a}(n) + 1, & \text{if } a_{i_a}(n) = 1
\end{cases} \]
How $i_a(k + 1)$ and $a_{i_a(k+1)}$ describe the form of run $k+1$
How $i_a(k+1)$ and $a_{i_a(k+1)}$ describe the form of run_{k+1}
The index jump function: how it describes the runs

\[a = [0; 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, \ldots] \]

\[(i_{a(k)})_{k \in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots) \]

Essential 1's are extremely important in description of runs.
Digitization levels

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[
a = [0; 1, a_2, \underbrace{1, 1}_{b_3}, 1, b_5, 1, 1, b_8, a_9, 1, a_{11}, b_9, \underbrace{1, a_{12}}_{b_{10}}, 1, 1, a_{16}, b_{11}, a_{17}, \ldots] \\
(i_a(k))_{k \in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots)
\]
Short run length: the CF elements

\[a = \left[0; b_1, b_2, 1, a_2, 1, a_5, 1, b_4, b_5, b_6, b_7, 1, a_8, a_9, a_{11}, a_{12}, 1, 1, a_{16}, a_{17}, \ldots \right] \]

\[(i_a(k))_{k \in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots) \]

\[\|S_k\| = b_k \]

\[1 \ a_2 \ 2 \ a_5 \ 2 \ a_8 \ a_9 \ 1 + a_{11} \ a_{12} \ 2 \ 1 + a_{16} \ a_{17} \]
The most frequent run: essential 1's

\[a = [0; 1, a_2, \underbrace{1, 1}_b, a_5, \underbrace{1, 1}_b, b_6, a_8, b_7, \underbrace{1, a_{11}}_b, b_9, \underbrace{1, 1}_b, \underbrace{1, a_{16}}_b, b_{12}, \ldots] \]

\[(i_a(k))_{k \in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots)\]

\[a_{i_a(k) + 1} > 1 \quad a_{i_a(k+1)} = 1 \]
The first run: parity of the function

$$a = [0; b_1, b_2, a_2, 1, b_3, a_5, 1, b_4, 1, b_5, a_8, b_6, b_7, 1, a_{11}, b_8, b_9, 1, a_{12}, \ldots]$$

$$(i_a(k))_{k \in \mathbb{N}^+} = (1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, \ldots)$$

$$_{i_a(k+1)}\text{even}$$

$$_{i_a(k+1)}\text{odd}$$
An illustration: for $a_2 = 2$ and $a_5 = 3$:

P_n - the nth prefix according to the run hierarchy
S_n - short run of level n
L_n - long run of level n

$P_1 = S_1 = 1$, \quad $L_1 = 10$
$S_2 = S_1L_1$, \quad $P_2 = L_2 = S_1^2L_1$
$S_3 = L_2S_2$, \quad $P_3 = L_3 = L_2^2S_2$
$P_4 = S_4 = L_3S_3^2$, \quad $L_4 = L_3^2S_3^3$
$P_5 = S_5 = S_4L_4$, \quad $L_5 = S_4^2L_4^2$

\[\frac{41}{57} = [0; 1, 2, 1, 1, 3, 1, 1]\]

\[P_5 = S_5 = S_4L_4 = (L_3S_3^2)(L_3S_3^3) = (L_2^2S_2)(L_2S_2)^2(L_2^2S_2)(L_2S_2)^3\]
\[= (S_1^2L_1)^2S_1L_1(S_1^2L_1S_1L_1)^2(S_1^2L_1)^2S_1L_1(S_1^2L_1S_1L_1)^3\]
\[= (1110)^2110(1110110)^2(1110)^2110(1110110)^3\]
The sequence of length specification for a

\[b_1 = a_1 \quad \text{and, for } \quad n \geq 2: \]

\[b_n = \begin{cases}
 a_{i_a}(n), & a_{i_a}(n) \neq 1 \\
 1 + a_{i_a}(n) + 1, & a_{i_a}(n) = 1
\end{cases} \]
Each class is generated by a sequence \((b_n)\) such that:

\[
b_1 \in \mathbb{N}^+ \quad \text{and, for } \quad n \geq 2, \quad b_n \in \mathbb{N}^+ \setminus \{1\}
\]

Each such \((b_n)\) is the sequence of length specification for some slope.
Two equivalence relations on the set of slopes

1. based on run length on all levels for \(s'(a) \):

\[
a \in \left[(b_1, b_2, b_3, \ldots) \right]_{\sim_{\text{len}}} \iff \\
\forall \ k \in \mathbb{N}^+ \ ||S_k|| = b_k
\]

2. based on run construction on all levels for \(s'(a) \):

\[
a \sim_{\text{con}} a' \iff \ i_a \equiv i_{a'}
\]
Done until now and to be done after a break:

1. Background information
2. Intuitions
3. Formal definitions and some motivation
4. Some results and open questions:
 - description of classes
 - fixed point theorem.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

\[||S_1|| = 1, \quad ||S_2|| = 2, \quad ||S_3|| = 2, \quad ||S_4|| = 3. \]

\[(b_n)_{n=1}^\infty = (1, 2, 2, 3, \ldots) \]

All lines from the same class have the same run lengths on all digitization levels.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

\[
||S_1|| = 1, \quad ||S_2|| = 2, \quad ||S_3|| = 2, \quad ||S_4|| = 3.
\]

\[
(\mathbf{b}_n)_{n=1}^\infty = (1, 2, 2, 3, \ldots)
\]

All lines from the same class have the same run lengths on all digitization levels.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

\[||S_1|| = 1, \ ||S_2|| = 2, \ ||S_3|| = 2, \ ||S_4|| = 3. \]

\[(b_n)_{n=1}^\infty = (1, 2, 2, 3, \ldots) \]

All lines from the same class have the same run lengths on all digitization levels.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

\[
\begin{align*}
||S_1|| &= 1, & ||S_2|| &= 2, & ||S_3|| &= 2, & ||S_4|| &= 3.
\end{align*}
\]

\[
(b_n)_{n=1}^\infty = (1, 2, 2, 3, \ldots)
\]

All lines from the same class have the same run lengths on all digitization levels.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

\[||S_1|| = 1, \ ||S_2|| = 2, \ ||S_3|| = 2, \ ||S_4|| = 3. \]

\[(b_n)_{n=1}^\infty = (1, 2, 2, 3, \ldots) \]

All lines from the same class have the same run lengths on all digitization levels.
Quantitative equivalence relation (run length)

Defined by run lengths (their cardinality)

$$\|S_1\| = 1, \ |\|S_2\| = 2, \ |\|S_3\| = 2, \ |\|S_4\| = 3.$$

$$\left(b_n\right)_{n=1}^\infty = (1, 2, 2, 3, \ldots)$$

All lines from the same class have the same run lengths on all digitization levels.
How to compare continued fractions

\[[a_0; a_1, a_2, \ldots] < [b_0; b_1, b_2, \ldots] \]

\[\uparrow \]

\[(a_0, -a_1, a_2, -a_3, a_4, -a_5, \ldots) \text{ lexic.} < (b_0, -b_1, b_2, -b_3, b_4, -b_5, \ldots) \]
Quantitative equivalence relation (run length)

The **least** element of the class:

\[
\min\{a \in]0, 1[\setminus \mathbb{Q}; \ a \in [(b_n)_{n \in \mathbb{N}^+}]_{\text{len}} \} = [0; b_1, 1, b_n - 1]_{n=2}^\infty.
\]

The **largest** element of the class:

\[
\max\{a \in]0, 1[\setminus \mathbb{Q}; \ a \in [(b_n)_{n \in \mathbb{N}^+}]_{\text{len}} \} = [0; b_1, b_2, 1, b_n - 1]_{n=3}^\infty.
\]
Qualitative equivalence relation (run construction)

Defined by the **index jump function**

Equivalently defined by the places of **essential 1's**

All lines from the same class have the same **construction** in terms of long and short runs on all digitization levels.

The **least** element in each class is 0.
A sequence \((t_j)_{j \in J}\) of positive integer numbers will be called an **essential sequence** iff:

- the set \(J\) is as follows: \(J = \emptyset, J = \mathbb{N}^+\) or \(J = [1, M]_\mathbb{Z}\) for some \(M \in \mathbb{N}^+\),

- the sequence \((t_j)_{j \in J}\) (if not empty) is a sequence of positive integers such that \(t_1 \geq 2\) and, for \(k \in J \setminus \{1\}\), \(t_k - t_{k-1} \geq 2\).
Each essential sequence defines an equivalence class under relation con.

An example:

If $t_n = 2n - 2$ for each $n \in \mathbb{N}^+$, then

$$[(t_n)_{n=1}^\infty]_{\text{con}} = [((\sqrt{5} - 1)/2)]_{\text{con}} =
\{[0; c_1, 1, c_2, 1, c_3, 1, \ldots]; \ c_k \in \mathbb{N}^+\}. $$
Qualitative equivalence relation (run construction)

Supremum for each class:

\[\forall \ n \in \mathbb{N}^+ \quad [(\forall \ k \in [1, n - 1]_\mathbb{Z}, \ t_k = 2k) \wedge (t_n > 2n \lor |J| = n - 1)] \]

\[\Rightarrow \sup\{a; \ a \in [(t_j)_{j \in J}]_{\sim_{\text{con}}}\} = \frac{F_{2n-1}}{F_{2n}}, \]

where \((F_n)_{n \in \mathbb{N}^+}\) is the **Fibonacci** sequence

and \((t_j)_{j \in J}\) is any essential sequence.
How to compare continued fractions

\[[a_0; a_1, a_2, \ldots] < [b_0; b_1, b_2, \ldots] \]

\(\uparrow \)

\((a_0, -a_1, a_2, -a_3, a_4, -a_5, \ldots)^{\text{lexic.}} < (b_0, -b_1, b_2, -b_3, b_4, -b_5, \ldots)\)
the candidates for max for any J: $[0; 1, a_2, \ldots]$

$t_1 > 2$ or $J = \emptyset$ (i.e., $a_2 \geq 2$)

$[0; 1, a_2^{(n)}, \ldots] \overset{a_2 \to \infty}{\longrightarrow} 1$

no max

$t_1 = 2$ (i.e., $a_2 = 1$)

the candidates for max: $[0; 1, 1, a_4, \ldots]$

$t_2 > 4$ or $|J| = 1$ (i.e., $a_4 \geq 2$)

$[0; 1, 1, 1, a_4^{(n)}, \ldots] \overset{a_4 \to \infty}{\longrightarrow} \frac{2}{3}$

no max

$t_2 = 4$ (i.e., $a_4 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, a_6, \ldots]$

$t_3 > 6$ or $|J| = 2$ (i.e., $a_6 \geq 2$)

$[0; 1, 1, 1, 1, 1, a_6^{(n)}, \ldots] \overset{a_6 \to \infty}{\longrightarrow} \frac{5}{8}$

no max

$t_3 = 6$ (i.e., $a_6 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, a_8, \ldots]$

$t_4 > 8$ or $|J| = 3$ (i.e., $a_8 \geq 2$)

$[0; 1, 1, 1, 1, 1, 1, 1, a_8^{(n)}, \ldots] \overset{a_8 \to \infty}{\longrightarrow} \frac{13}{21}$

no max

$t_4 = 8$ (i.e., $a_8 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, 1, 1, a_{10}, \ldots]$

$t_5 > 10$ or $|J| = 4$ (i.e., $a_{10} \geq 2$)

$[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{10}^{(n)}, \ldots] \overset{a_{10} \to \infty}{\longrightarrow} \frac{34}{55}$

no max

$t_5 = 10$ (i.e., $a_{10} = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{12}, \ldots]$

and so on...
the candidates for max for any J:

$t_1 > 2$ or $J = \emptyset$ (i.e., $a_2 \geq 2$)

$[0; 1, a_2^{(n)}, \ldots] \xrightarrow{n \to \infty} 1$

no max

$t_1 = 2$ (i.e., $a_2 = 1$)

$[0; 1, 1, 1, a_4^{(n)}, \ldots] \xrightarrow{n \to \infty} \frac{2}{3}$

no max

the candidates for max: $[0; 1, 1, 1, a_4, \ldots]$

$t_2 > 4$ or $|J| = 1$ (i.e., $a_4 \geq 2$)

$t_2 = 4$ (i.e., $a_4 = 1$)

$[0; 1, 1, 1, 1, a_6^{(n)}, \ldots] \xrightarrow{n \to \infty} \frac{5}{8}$

no max

the candidates for max: $[0; 1, 1, 1, 1, a_6, \ldots]$

$t_3 > 6$ or $|J| = 2$ (i.e., $a_6 \geq 2$)

$t_3 = 6$ (i.e., $a_6 = 1$)

$[0; 1, 1, 1, 1, 1, a_8^{(n)}, \ldots] \xrightarrow{n \to \infty} \frac{13}{21}$

no max

the candidates for max: $[0; 1, 1, 1, 1, 1, a_8, \ldots]$

$t_4 > 8$ or $|J| = 3$ (i.e., $a_8 \geq 2$)

$t_4 = 8$ (i.e., $a_8 = 1$)

$[0; 1, 1, 1, 1, 1, 1, a_{10}^{(n)}, \ldots] \xrightarrow{n \to \infty} \frac{34}{55}$

no max

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, a_{10}, \ldots]$

$t_5 > 10$ or $|J| = 4$ (i.e., $a_{10} \geq 2$)

$t_5 = 10$ (i.e., $a_{10} = 1$)

and so on...
the candidates for max for \(J \in \{0;1,a_2,\ldots\} \)

\[t_1 > 2 \text{ or } J = \emptyset \text{ (i.e., } a_2 \geq 2) \]

\[\left[0;1,a_2^{(n)},\ldots\right] \xrightarrow{a_2^{(n)} \to \infty} 1 \]

no max

\[t_1 = 2 \]

(i.e., \(a_2 = 1\))

the candidates for max:

\[0;1,1,1,a_4,\ldots \]

\[t_2 > 4 \text{ or } |J| = 1 \text{ (i.e., } a_4 \geq 2) \]

\[\left[0;1,1,1,a_4^{(n)},\ldots\right] \xrightarrow{a_4^{(n)} \to \infty} \frac{2}{3} \]

no max

\[t_2 = 4 \]

(i.e., \(a_4 = 1\))

the candidates for max:

\[0;1,1,1,1,a_6,\ldots \]

\[t_3 > 6 \text{ or } |J| = 2 \text{ (i.e., } a_6 \geq 2) \]

\[\left[0;1,1,1,1,a_6^{(n)},\ldots\right] \xrightarrow{a_6^{(n)} \to \infty} \frac{5}{8} \]

no max

\[t_3 = 6 \]

(i.e., \(a_6 = 1\))

the candidates for max:

\[0;1,1,1,1,1,a_8,\ldots \]

\[t_4 > 8 \text{ or } |J| = 3 \text{ (i.e., } a_8 \geq 2) \]

\[\left[0;1,1,1,1,1,a_8^{(n)},\ldots\right] \xrightarrow{a_8^{(n)} \to \infty} \frac{13}{21} \]

no max

\[t_4 = 8 \]

(i.e., \(a_8 = 1\))

the candidates for max:

\[0;1,1,1,1,1,1,a_{10},\ldots \]

\[t_5 > 10 \text{ or } |J| = 4 \text{ (i.e., } a_{10} \geq 2) \]

\[\left[0;1,1,1,1,1,1,a_{10}^{(n)},\ldots\right] \xrightarrow{a_{10}^{(n)} \to \infty} \frac{34}{55} \]

no max

\[t_5 = 10 \]

(i.e., \(a_{10} = 1\))

the candidates for max:

\[0;1,1,1,1,1,1,1,a_{12},\ldots \]

and so on...
the candidates for max for any \(J : [0; 1, a_2, \ldots] \)

- \(t_1 > 2 \) or \(J = \emptyset \) (i.e., \(a_2 \geq 2 \))

\[[0; 1, a_2^{(n)}, \ldots] a_2^{(n)} \rightarrow \infty 1 \]

no max

- \(t_1 = 2 \) (i.e., \(a_2 = 1 \))

\[[0; 1, 1, 1, a_4, \ldots] a_4^{(n)} \rightarrow \infty \frac{5}{8} \]

the candidates for max: \(\{0; 1, 1, 1, a_4, \ldots\} \)

- \(t_2 > 4 \) or \(|J| = 1 \) (i.e., \(a_4 \geq 2 \))

\[[0; 1, 1, 1, a_4^{(n)}, \ldots] a_4^{(n)} \rightarrow \frac{5}{8} \]

no max

- \(t_2 = 4 \) (i.e., \(a_4 = 1 \))

\[[0; 1, 1, 1, 1, 1, a_6, \ldots] a_6^{(n)} \rightarrow \infty \frac{13}{21} \]

the candidates for max: \(\{0; 1, 1, 1, 1, 1, a_6, \ldots\} \)

- \(t_3 > 6 \) or \(|J| = 2 \) (i.e., \(a_6 \geq 2 \))

\[[0; 1, 1, 1, 1, 1, a_6^{(n)}, \ldots] a_6^{(n)} \rightarrow \frac{13}{21} \]

no max

- \(t_3 = 6 \) (i.e., \(a_6 = 1 \))

\[[0; 1, 1, 1, 1, 1, 1, 1, a_8, \ldots] a_8^{(n)} \rightarrow \infty \frac{34}{55} \]

the candidates for max: \(\{0; 1, 1, 1, 1, 1, 1, 1, a_8, \ldots\} \)

- \(t_4 > 8 \) or \(|J| = 3 \) (i.e., \(a_8 \geq 2 \))

\[[0; 1, 1, 1, 1, 1, 1, a_8^{(n)}, \ldots] a_8^{(n)} \rightarrow \frac{34}{55} \]

no max

- \(t_4 = 8 \) (i.e., \(a_8 = 1 \))

\[[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{10}, \ldots] a_{10}^{(n)} \rightarrow \infty \frac{34}{55} \]

the candidates for max: \(\{0; 1, 1, 1, 1, 1, 1, 1, 1, a_{10}, \ldots\} \)

- \(t_5 > 10 \) or \(|J| = 4 \) (i.e., \(a_{10} \geq 2 \))

\[[0; 1, 1, 1, 1, 1, 1, 1, a_{10}^{(n)}, \ldots] a_{10}^{(n)} \rightarrow \frac{34}{55} \]

no max

- \(t_5 = 10 \) (i.e., \(a_{10} = 1 \))

\[[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{12}, \ldots] \]

the candidates for max: \(\{0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{12}, \ldots\} \)

and so on...
the candidates for max for any J: $[0; 1, a_2, \ldots]$

$t_1 > 2$ or $J = \emptyset$ (i.e., $a_2 \geq 2$)

$[0; 1, a_2^{(n)}, \ldots] a_2^{(n)} \to \infty 1$

no max

$t_1 = 2$ (i.e., $a_2 = 1$)

the candidates for max: $[0; 1, 1, 1, a_4, \ldots]$

$t_2 > 4$ or $|J| = 1$ (i.e., $a_4 \geq 2$)

$[0; 1, 1, 1, a_4^{(n)}, \ldots] a_4^{(n)} \to \infty \frac{5}{8}$

no max

$t_2 = 4$ (i.e., $a_4 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, a_6, \ldots]$

$t_3 > 6$ or $|J| = 2$ (i.e., $a_6 \geq 2$)

$[0; 1, 1, 1, 1, a_6^{(n)}, \ldots] a_6^{(n)} \to \infty \frac{13}{21}$

no max

$t_3 = 6$ (i.e., $a_6 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, a_8, \ldots]$

$t_4 > 8$ or $|J| = 3$ (i.e., $a_8 \geq 2$)

$[0; 1, 1, 1, 1, 1, a_8^{(n)}, \ldots] a_8^{(n)} \to \infty \frac{34}{55}$

no max

$t_4 = 8$ (i.e., $a_8 = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, a_{10}, \ldots]$

$t_5 > 10$ or $|J| = 4$ (i.e., $a_{10} \geq 2$)

$[0; 1, 1, 1, 1, 1, 1, 1, 1, a_{10}^{(n)}, \ldots] a_{10}^{(n)} \to \infty \frac{34}{55}$

no max

$t_5 = 10$ (i.e., $a_{10} = 1$)

the candidates for max: $[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a_{12}, \ldots]$

and so on...
the candidates for max for any J: $[0;1,a_2,\ldots]$

$t_1 > 2$ or $J = \emptyset$ (i.e., $a_2 \geq 2$)

$[0;1,a_2^{(n)},\ldots] \overset{a_2^{(n)} \to \infty}{\rightarrow} 1$

no max

t_1 = 2
(i.e., $a_2 = 1$)

the candidates for max: $[0;1,1,1,\ldots]$

$t_2 > 4$ or $|J| = 1$ (i.e., $a_4 \geq 2$)

$[0;1,1,1,a_4^{(n)},\ldots] \overset{a_4^{(n)} \to \infty}{\rightarrow} \frac{2}{8}$

no max

t_2 = 4
(i.e., $a_4 = 1$)

the candidates for max: $[0;1,1,1,1,\ldots]$

$t_3 > 6$ or $|J| = 2$ (i.e., $a_6 \geq 2$)

$[0;1,1,1,1,a_6^{(n)},\ldots] \overset{a_6^{(n)} \to \infty}{\rightarrow} \frac{5}{8}$

no max

t_3 = 6
(i.e., $a_6 = 1$)

the candidates for max: $[0;1,1,1,1,1,\ldots]$

$t_4 > 8$ or $|J| = 3$ (i.e., $a_8 \geq 2$)

$[0;1,1,1,1,1,a_8^{(n)},\ldots] \overset{a_8^{(n)} \to \infty}{\rightarrow} \frac{13}{21}$

no max

t_4 = 8
(i.e., $a_8 = 1$)

the candidates for max: $[0;1,1,1,1,1,1,\ldots]$

$t_5 > 10$ or $|J| = 4$ (i.e., $a_{10} \geq 2$)

$[0;1,1,1,1,1,1,1,a_{10}^{(n)},\ldots] \overset{a_{10}^{(n)} \to \infty}{\rightarrow} \frac{34}{55}$

no max

t_5 = 10
(i.e., $a_{10} = 1$)

the candidates for max: $[0;1,1,1,1,1,1,1,1,\ldots]$

and so on...
the candidates for max for any \(J : [0;1,a_2,\ldots] \)

\[
t_1 > 2 \text{ or } J = \emptyset \quad (\text{i.e., } a_2 \geq 2)\]

\[
[0;1,a_2^{(n)},\ldots] a_2^{(n)} \rightarrow \infty 1
\]

no max

\[
t_1 = 2 \quad (\text{i.e., } a_2 = 1)\]

the candidates for max: \([0;1,1,1,a_4,\ldots]\)

\[
t_2 > 4 \text{ or } |J| = 1 \quad (\text{i.e., } a_4 \geq 2)\]

\[
[0;1,1,1,a_4^{(n)},\ldots] a_4^{(n)} \rightarrow \infty 2 \frac{1}{3}
\]

no max

\[
t_2 = 4 \quad (\text{i.e., } a_4 = 1)\]

the candidates for max: \([0;1,1,1,1,a_6,\ldots]\)

\[
t_3 > 6 \text{ or } |J| = 2 \quad (\text{i.e., } a_6 \geq 2)\]

\[
[0;1,1,1,1,a_6^{(n)},\ldots] a_6^{(n)} \rightarrow \infty \frac{5}{8}
\]

no max

\[
t_3 = 6 \quad (\text{i.e., } a_6 = 1)\]

the candidates for max: \([0;1,1,1,1,1,a_8,\ldots]\)

\[
t_4 > 8 \text{ or } |J| = 3 \quad (\text{i.e., } a_8 \geq 2)\]

\[
[0;1,1,1,1,1,a_8^{(n)},\ldots] a_8^{(n)} \rightarrow \infty \frac{13}{21}
\]

no max

\[
t_4 = 8 \quad (\text{i.e., } a_8 = 1)\]

the candidates for max: \([0;1,1,1,1,1,1,a_{10},\ldots]\)

\[
t_5 > 10 \text{ or } |J| = 4 \quad (\text{i.e., } a_{10} \geq 2)\]

\[
[0;1,1,1,1,1,1,a_{10}^{(n)},\ldots] a_{10}^{(n)} \rightarrow \infty \frac{34}{55}
\]

no max

\[
t_5 = 10 \quad (\text{i.e., } a_{10} = 1)\]

the candidates for max: \([0;1,1,1,1,1,1,1,a_{12},\ldots]\)

and so on...

A new fixed point theorem for words
The set of all right infinite words over \(\{1,2\} \):

\[
\{1, 2\}^\omega
\]

\(w : \mathbb{N}^+ \rightarrow \{1, 2\} \)

\[
w = w(1)w(2)w(3) \cdots \in \{1, 2\}^\omega
\]
Kolakoski word

The run-length encoding operator

$$\Delta_l: \{1, 2\}^\omega \rightarrow \mathbb{N}^\omega$$

$$w = \begin{cases} 1^{k_1}2^{k_2}1^{k_3}2^{k_4}\ldots, & \text{if } w \in 1 \cdot \{1, 2\}^\omega \\ 2^{k_1}1^{k_2}2^{k_3}1^{k_4}\ldots, & \text{if } w \in 2 \cdot \{1, 2\}^\omega \end{cases}$$

$$\Delta_l(w) = k_1k_2k_3\ldots$$
Kolakoski word

The run-length encoding operator - an example:

\[w = 11112122222222112221212222222221 \ldots \]

\[\Delta'(w) = 5, 1, 1, 7, 2, 3, 1, 1, 1, 9, \ldots \]
Kolakoski word

\[w = 2 \ 2 \ 1 \ 1 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 1 \ 1 \ 2 \ldots \]

\[\Delta_t(w) = 2 \ 2 \ 1 \ 1 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 1 \ 1 \ 2 \ldots \]
The constructional word $\gamma(a) \in \{0, 1\}^\omega$

Let $a = [0; a_1, a_2, \ldots]$. For $n \in \mathbb{N}^+$:

$\gamma_n(a) = i_a(n + 2) - i_a(n + 1) - 1$

$\gamma_n(a) = \delta_1(a_{i_a(n+1)})$

$\gamma_n(a) = \begin{cases}
0, & S_n \text{ is the most frequent run on level } n \text{ for } s'(a) \\
1, & L_n \text{ is the most frequent run on level } n \text{ for } s'(a).
\end{cases}$
The constructional word \(\gamma(a) \in \{0, 1\}^\omega \)

Let \(a = [0; a_1, a_2, \ldots] \). For \(n \in \mathbb{N}^+ \):

\[
\gamma_n(a) = i_a(n + 2) - i_a(n + 1) - 1
\]

\[
\gamma_n(a) = \delta_1(\alpha_{i_a(n+1)})
\]

\[
\gamma_n(a) = \begin{cases}
0, & S_n \text{ is the most frequent run on level } n \text{ for } s'(a) \\
1, & L_n \text{ is the most frequent run on level } n \text{ for } s'(a).
\end{cases}
\]
Fixed point theorem: the run-construction encoding operator

Definition: The run-construction encoding operator

\[\Delta_c : \mathcal{UM}_0 \rightarrow \{0, 1\}^\omega \] is defined as \(\Delta_c = (1\gamma) \circ (s')^{-1} \).

\[\begin{array}{c}
\mathcal{Q} \\
\left]0, 1\right[\end{array} \xrightarrow{s'} \mathcal{UM}_0 \xrightarrow{1\gamma} \{0, 1\}^\omega \supset \mathcal{UM}_0 \]

where \(\mathcal{UM}_0 \) denotes the set of all upper mechanical words with irrational slope \(0 < a < 1 \) and with intercept 0.
Let $a \in]0, 1[\setminus \mathbb{Q}$. The word $s'(a) = 1c(a)$ has balanced construction if

$$\exists \alpha \in \mathbb{R} \quad \gamma(a) = c(\alpha)$$

Sturmian-balanced construction if

$$\exists \alpha \in]0, 1[\setminus \mathbb{Q} \quad \gamma(a) = c(\alpha)$$

self-balanced construction

$$1\gamma(a) = \Delta_c(1c(a)) = 1c(a)$$
Balanced construction – some examples

Paper VI. Examples 2, 3, 4, 5.

- The words $s'(a)$ with $a = [0; a_1, a_2, a_3, \ldots]$, where $a_k \geq 2$ for all $k \geq 2$, have balanced construction.

- The words $s'(a)$ with $a = [0; a_1, 1, a_3, 1, a_5, 1, a_7, \ldots]$, where $a_{2k-1} \in \mathbb{N}^+$ for all $k \in \mathbb{N}^+$, have balanced construction.
A fixed-point theorem: exactly 1 fixed point in each equivalence class

Let \((b_n)_{n \in \mathbb{N}^+}\) be such that \(b_1 \in \mathbb{N}^+\) and \(b_n \in \mathbb{N}^+ \setminus \{1\}\) for all \(n \geq 2\). Then

\[
\exists 1 a \in]0,1[\setminus \mathbb{Q} \\
\quad a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim_{\text{len}}} \wedge s'(a) = \Delta_c(s'(a)).
\]
A fixed-point theorem:
exactly 1 fixed point in each equivalence class

Let \((b_n)_{n \in \mathbb{N}^+}\) be such that \(b_1 \in \mathbb{N}^+\) and \(b_n \in \mathbb{N}^+ \setminus \{1\}\) for all \(n \geq 2\). Then

\[
\exists a \in]0,1[\setminus \mathbb{Q} \quad a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim \text{len}} \land s'(a) = \Delta_c(s'(a)).
\]
A fixed-point theorem: exactly 1 fixed point in each equivalence class

Let \((b_n)_{n \in \mathbb{N}^+}\) be such that \(b_1 \in \mathbb{N}^+\) and \(b_n \in \mathbb{N}^+ \setminus \{1\}\) for all \(n \geq 2\). Then

\[
\exists 1 \ a \in]0,1[\setminus \mathbb{Q} \quad a \in [(b_n)_{n \in \mathbb{N}^+}]_{\sim_{\text{len}}} \land s'(a) = \Delta_c(s'(a)).
\]
Equivalence classes under the relation len
Equivalence classes under the relation \(\text{len} \)

- \(a_{\text{max}} = [0; b_1, b_2, 1, b_3 - 1, 1, b_4 - 1, 1, b_5 - 1, \ldots] \),
- \(a_{\text{min}} = a_{\text{long}} = [0; b_1, 1, b_2 - 1, 1, b_3 - 1, 1, b_4 - 1, \ldots] \),
- \(a_{\text{short}} = [0; b_1, b_2, b_3, b_4, \ldots] \),
- \(a_{\text{fix}} \) is the slope of the fixed point of the run-construction encoding operator \(\Delta_c \), i.e., \(\gamma(a_{\text{fix}}) = e(a_{\text{fix}}) \), where \(\gamma \) is the constructional word.
The set of all fixed points

No quadratic surd can be a fixed point!

Their constructional words have rational slopes, if any.

(Proposition 3 in Paper VI).
The set of all fixed points

Theorem Let $\text{Fix}(\Delta_c) \subseteq \mathcal{UM}_0$ denote the set of all fixed points of Δ_c. Then:

1. $\text{Fix}(\Delta_c) \subseteq s'(\mathbb{Q}, \frac{2}{3})$; numbers 0 and $\frac{2}{3}$ are accumulation points of $(s')^{-1}(\text{Fix}(\Delta_c))$.

2. $\text{card}(\text{Fix}(\Delta_c))$ is equal to that of the continuum.
Some combinatorial questions

Combinatorics on words - new classes of words

Iterations of the run-construction encoding operator

What can one say about the fixed points?
Formulate an iff condition for CFs of fixed points.

Two kinds of description: by the CF-elements and by the properties of real numbers (transcendental, algebraical)
Thank you for your attention