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An extremely detailed table of contents; the videos (titles in green) are numbered

In blue: problems solved on an iPad (the solving process presented for the students; active problem solving)
In red: solved problems demonstrated during a presentation (a walk-through; passive problem solving)
In magenta: additional problems solved in written articles (added as resources).

C1 Eigendecomposition, spectral decomposition

S1 Introduction to the course

1 Introduction to the course. Extra material: this list with all the movies and problems.

S2 Geometrical operators in the plane and in the 3-space
You will learn: using eigenvalues and eigenvectors of geometrical operators such as symmetries, projections, and
rotations in order to get their standard matrices; you will also strengthen your understanding of geometrical
transformations.

2 Eigendecomposition, recap.

3 Eigendecomposition and operators.

4 Problem 1: Line symmetry in the plane.
Problem 1: Determine the standard matrix for the linear transformation T which for each point (x, y) ∈ R2

assigns its reflection about the line y = 2x.
Extra material: notes with solved Problem 1.

5 Problem 2: Projection in the plane.
Problem 2: Determine the standard matrix for the linear transformation T which for each point (x, y) ∈ R2

assigns its projection on the line y = 2x along vector (1, 1).
Extra material: notes with solved Problem 2.

6 Problem 3: Symmetry in the 3-space.
Problem 3: The linear operator T : R3 → R3 is the symmetry along the plane P : x+ y + 2z = 0.
a) Find an ON-basis {b1, b2, b3} in R3 consisting of eigenvectors for T ,

b) Determine the standard matrix of T (in standard basis).
Extra material: notes with solved Problem 3.

7 Problem 4: Projection in the 3-space.
Problem 4: The linear operator T : R3 → R3 is the projection on the plane P : x + 2y + 3z = 0 in the
direction of vector v = (1, 1, 1).
a) Find a basis {b1, b2, b3} in R3 consisting of eigenvectors for T ,

b) Determine the standard matrix of T (in standard basis).
Extra material: notes with solved Problem 4.

8 Problem 5: Projection in the 3-space.
Problem 5: The linear operator T : R3 → R3 is defined as

T

x1

x2

x3

 =
1

8

 8x1

−x1 + 6x2 − 3x3

−2x1 − 4x2 + 2x3

 .



a) Show that T is linear,

b) Show that T describes a projection on a plane through the origin. Determine an equation for this plane
and the directional vector of the projection.

Extra material: notes with solved Problem 5.

9 Another formulation of eigendecomposition: Spectral decomposition.

10 Powers of matrices: Two methods.

11 Spectral decomposition, Problem 6.
Problem 6: The linear operator TA : R3 → R3 is defined as

TA

x1

x2

x3

 =

3x1 + 2x2 − 6x3

2x1 + 3x2 − 6x3

x1 + 2x2 − 4x3

 .

a) Show that TA is diagonalizable; determine a basis for each eigenspace, an invertible matrix B, and a
diagonal matrix D such that A = BDB−1.

b) Show that A can be represented as A = λ1P1 + λ2P2 + λ3P3 where

λ1, λ2, λ3 ∈ R, P1 + P2 + P3 = I, P 2
1 = P1, P 2

2 = P2, P 2
3 = P3

and
P1P2 = P2P1 = P1P3 = P3P1 = P2P3 = P3P2 = O.

12 Spectral decomposition, Problem 7.
Problem 7: The linear operator TA : R3 → R3 is defined as

TA

x1

x2

x3

 =
1

6

5x1 + 7x2 + 2x3

7x1 + 5x2 − 2x3

2x1 − 2x2 − 4x3

 .

a) Show that TA is diagonalizable; determine a basis for each eigenspace, an invertible matrix B, and a
diagonal matrix D such that A = BDB−1.

b) Show that A can be represented as A = λ1P1 + λ2P2 + λ3P3 where

λ1, λ2, λ3 ∈ R, P1 + P2 + P3 = I, P 2
1 = P1, P 2

2 = P2, P 2
3 = P3

and
P1P2 = P2P1 = P1P3 = P3P1 = P2P3 = P3P2 = O.

13 Spectral decomposition, Geometrical illustration, Problem 8.
Problem 8: The linear operator TA : R2 → R2 is defined with help of my favorite matrix:

A =

[
2 3
4 1

]
.

a) We know that TA is diagonalizable (Video 197 in Part 2), and we know an invertible matrix B, and a
diagonal matrix D such that A = BDB−1.

b) Show that A can be represented as A = λ1P1 + λ2P2 where

λ1, λ2 ∈ R, P1 + P2 = I, P 2
1 = P1, P 2

2 = P2, P1P2 = P2P1 = O.

c) Show a geometrical illustration of the spectral decomposition above.
Extra material: notes with solved Problem 8.



S3 More problem solving; spaces different from Rn

You will learn: work with eigendecomposition of matrices for linear operators on various vector spaces.

14 Eigendecomposition, Problem 1.
Problem 1: The linear operator TA : R3 → R3 is defined by the following matrix:

A =

2 1 a
1 2 −a
a 0 1

 .

For which values of a ∈ R is TA diagonalizable? For each such a determine a basis consisting entirely of
eigenvectors. (We solve this problem only for a ̸= 0; the solution for a = 0 comes in Video 149.)
Extra material: notes with solved Problem 1.

15 Eigendecomposition, Problem 2.
Problem 2: The linear operator TA : R3 → R3 is defined by the following matrix:

A =

a+ 1 1 a+ 1
1 2 1
0 −1 0

 .

For which values of a ∈ R is TA diagonalizable? For each such a determine a basis consisting entirely of
eigenvectors.
Extra material: notes with solved Problem 2.

16 Powers and roots, Problem 3.
Problem 3: Let

A =

2 0 1
1 1 1
0 0 3

 .

Find a solution to the equation X5 = A.
Extra material: notes with solved Problem 3.

17 Powers and roots, Problem 4.
Problem 4: Let

A =

−1 −1 −1
0 2 −2
0 −1 3

 .

Find a solution to the equation Xn = A for each positive odd exponent n.
Extra material: notes with solved Problem 4.

18 In the space of polynomials, Problem 5.
Problem 5: P2 = P2[t] is the space of all the polynomials p(t) of degree ⩽ 2. The linear operator F : P2 → P2

is defined by
F (p) = p(t− 1)− tp′(t) for p(t) = x1 + x2t+ x3t

2 ∈ P2.

Determine Im(F ), Ker(F ), all the eigenvalues and eigenspaces of F .
Extra material: notes with solved Problem 5.

19 In the space of polynomials, Problem 6.
Problem 6: P3 = P3[t] is the space of all the polynomials p(t) of degree ⩽ 3. The linear operator F : P3 → P3

is defined by

F (p) = p′′(t) + (t+ 1)p′(t) + 2p(t) for p(t) = x1 + x2t+ x3t
2 + x4t

3 ∈ P3.



Determine whether F is diagonalizable and, if the answer is yes, determine a basis of P3 containing only
eigenvectors of F .
Extra material: notes with solved Problem 6.

20 In the space of matrices, Problem 7.
Problem 7: S2 is the space of all the symmetrical 2 × 2 matrices with real entries. The linear operator
F : S2 → S2 is defined by

F (x) =

(
−4x1 + 9x2 − 6x3 −5x1 + 10x2 − 6x3

−5x1 + 10x2 − 6x3 −5x1 + 11x2 − 7x3

)
for x =

(
x1 x3

x3 x2

)
∈ S2.

Determine the standard matrix for F and show that F is not diagonalizable.
Extra material: notes with solved Problem 7.

S4 Intermezzo: isomorphic vector spaces
You will learn: about certain similarities between different spaces and how to measure them.

21 You wouldn’t see the difference...

22 Different spaces with the same structure.
An observation: the neutral element of addition (additive identity) maps onto the neutral element of addition
under each isomorphism.
Example 1: The following three vector spaces over R are isomorphic: P2

∼= R3 ∼= S2.

23 More examples of isomorphic vector spaces.
Example 2: Pn−1

∼= Rn. The following three vector spaces over R are isomorphic: P3
∼= R4 ∼= M2×2.

24 A necessary condition for isomorphic vector spaces.

25 A necessary and sufficient condition for isomorphic vector spaces.

26 Why you don’t see the difference.

27 Isomorphic spaces: Problem 1.
Problem 1: Compute the dimension of Sn (symmetric n × n matrices with real entries) for each natural
number n ⩾ 1.

28 Isomorphic spaces: Problem 2.
Problem 2: Which of the following spaces are isomorphic?:
a) R2 and R4,

b) P5 and R5,

c) M2×3 and R6

d) P5 and M2×3,

e) M2×k and Ck,

f) R2 and the xy-plane in R3.
Extra material: notes with solution to Problem 2.

29 Isomorphic spaces: Problem 3.
Problem 3: Which of the following maps are isomorphisms?:

a) f : M2×2 → R given by
(
a b
c d

)
7→ ad− bc,



b) f : M2×2 → R4 given by
(
a b
c d

)
7→


a+ b+ c+ d
a+ b+ c
a+ b
a

,

c) f : M2×2 → P3 given by
(
a b
c d

)
7→ c+ (d+ c)x+ (b+ a)x2 + ax3,

d) f : M2×2 → P3 given by
(
a b
c d

)
7→ c+ (d+ c)x+ (b+ a+ 1)x2 + ax3.

Extra material: notes with solution to Problem 3.

30 Vector spaces, fields, rings; ring homomorphisms and isomorphisms.

An observation: ring homomorphism f : Z → M2×2 defined by x 7→
(
x 0
0 0

)
does not map the multiplica-

tive identity of Z to the multiplicative identity of M2×2.

31 Vector spaces, fields, rings, Problem 4.
Problem 4: Some examples of rings:
a) each field, for example R and C,

b) R[x] and M2×2 (not fields); not P3,

c) diagonal n× n matrices,

d) upper/lower-triangular n× n matrices.
Extra material: notes with solution to Problem 4.

32 Vector spaces, fields, rings, Problem 5.
Problem 5: Motivate the following statements:
a) Each field is a vector space over itself,

b) R is a vector space over R, dimension 1,

c) C is a vector space over C, dimension 1,

d) Fields R and C are not isomorphic,

e) C is a vector space over R, dimension 2,

f) R is not a vector space over C,

g) R2 and C are isomorphic vector spaces over R, but only C has a field structure.
Extra material: notes with solution to Problem 5.

S5 Recurrence relations, dynamical systems, Markov matrices
You will learn: more exciting applications of eigenvalues and diagonalization.

33 Continuous versus discrete.

34 Two famous examples of recurrence.
Examples: Factorial; Geometric sequence.
Extra material: notes with an induction proof showing that the recurrence x0 = 1, xn+1 = 2xn describes
the geometric sequence xn = 2n.

35 Linear discrete dynamical systems.

36 Systems of difference equations, Problem 1.
Problem 1: Let Xn be a sequence of vectors satisfying the difference equation

Xn+1 = AXn for n = 0, 1, 2, . . . , where A =

[
0 1
− 1

2
3
2

]
and X0 =

[
2
1

]
.



Determine Xn and examine lim
n→∞

Xn. Show two different methods of solving this problem.

Extra material: notes with solved Problem 1.

37 Systems of difference equations, Problem 2.
Problem 2: Let un, vn be two sequences satisfying following recursive relation:{

un+1 = un + 3vn

vn+1 = 3vn + un

, for n = 0, 1, 2, . . . and u0 = 2, v0 = 1.

Determine both sequences. Show two different methods of solving this problem.
Extra material: notes with solved Problem 2.

38 Systems of difference equations, Problem 3.
Problem 3: Let un, vn, wn be three sequences satisfying following recursive relation:

un+1 = 2un − 2vn + wn

vn+1 = 2un + 4vn − 2wn

wn+1 = 4un + 2vn − wn

, for n = 0, 1, 2, . . . and u0 = 1, v0 = 0, w0 = 1.

Determine these sequences.
Extra material: notes with solved Problem 3.

39 Higher order difference equations, Problem 4.
Problem 4: Rewrite the following (third order) difference equation as a first-order system:

un+3 − 2un+2 − 5un+1 + 6un = 0.

Extra material: notes with solved Problem 4.

40 Higher order difference equations, Problem 5.
Problem 5: Rewrite the following difference equations as first-order systems:
a) un+2 = 5un+1 − 6un,

b) un+2 = −4un+1 + 3un,

c) un+3 = 5un+2 + 6un+1 + 7un,

d) un+3 = 3un+2 − 12un.
Write corresponding matrix equations.
Extra material: notes with solved Problem 5.

41 Higher order difference equations, Problem 6.
Problem 6: Solve the following difference equation with initial conditions:

un+2 = 8un+1 − 12un, u0 = 5, u1 = 4.

Extra material: notes with solved Problem 6.

42 Markov matrices.
Examples: Eight matrices: Markov or not?

43 Each Markov matrix has eigenvalue 1.

44 Steady-state vector (equilibrium vector), Problem 7.

Problem 7: Find a steady-state vector for Markov matrix
(
.6 .3
.4 .7

)
. Illustrate graphically long-time beha-

viour of the system in three different processes: one with the initial state X0 = (50, 20), one with the initial
state X0 = (10, 30), and one with the initial state X0 = (100, 10).
Extra material: notes with solved Problem 7.



45 Markov matrices, Problem 8, Restaurant.
Problem 8: A college with 3000 students has two restaurants: U and V. All the students have lunch there
every day. They change restaurant from time to time, according to the following pattern:

· approximately 20% of the students having lunch in restaurant U one day change to V the next day,

· approximately 10% of the students having lunch in restaurant V one day change to U the next day.
We know that today (day 0) there are 1500 students in restaurant U and 1500 students in restaurant V.
Denote by un and vn the number of students having lunch in the restaurants U and V (respectively) on
day n.
a) Determine un and vn for each natural number n.

b) What is the long-term prediction for the lunch situation? (Determine the equilibrium vector / steady-
state vector.)

Extra material: notes with solved Problem 8.

46 Markov matrices, Problem 9, Migration.
Problem 9: Each year about 5% of the population of Uppsala moves to Vattholma (and 95% stays in
Uppsala), while 3% of the population of Vattholma moves to Uppsala (and 97% remains in Vattholma).
Denote by Xn = (un, vn) the population distribution vector (in percent) under year n. What is the long-
term prediction for the population distribution if under year 0 (now) 60% of the entire population of both
cities lives in Uppsala and 40% in Vattholma?
Extra material: notes with solved Problem 9.

47 Markov matrices, Problem 10, Election.
Problem 10: Congressional election is held every second year, and there are three ways to vote: D (De-
mocratic), R (Republican) and I (Independent). Assume that the election outcomes Xn = (dn, rn, in)

T

in some district with constant number of voters form a Markov chain Xn with transition matrix P , i.e.
Xn+1 = PXn: dn+1

rn+1

in+1

 =

.70 .10 .30
.20 .80 .30
.10 .10 .40

dnrn
in


The outcome vector Xn = (dn, rn, in)

T contains percentage of voting R, D or I during the election n, Xn+1

describes the percentages during next elections (two years later).
a) Draw a diagram illustrating the situation described by this Markov process.

b) Suppose that outcome of one election is given by X0 = (.55, .40, .05)T . Determine the likely outcome
of the next election and the likely outcome of the election after that.

c) Determine the steady-state vector for this process.

d) What percentage of the voters are likely to vote R in some election many years from now, assuming
that the election outcomes form a Markov chain?

Extra material: notes with solved Problem 10.

48 Dynamical systems, Problem 11.
Problem 11: The matrix A has eigenvalues 1, 2

3 , and 1
3 , with corresponding eigenvectors v1, v2, and v3:

A =
1

9

 7 −2 0
−2 6 2
0 2 5

 , v1 =

−2
2
1

 , v2 =

21
2

 , v3 =

 1
2
−2

 .

Find the general solution of the equation Xn+1 = AXn if X0 = (1, 11,−2)T . Compute lim
n→∞

Xn.

Extra material: notes with solved Problem 11.

49 Where to read more on this topic?



S6 Solving systems of linear ODE, and solving higher order ODE
You will learn: solve systems of linear ODE and linear ODE of higher order with help of diagonalization.

50 What is an ODE and what kinds of ODE we are going to deal with.

51 Solutions to first order linear ODE with constant coefficients.

52 Systems of first order linear ODE with constant coefficients.

53 A very simple example.
Example 1: Determine all the solutions to the system of ODE:{

x′
1 = 2x1

x′
2 = 2x2

54 The method.
Example 2: Determine all the solutions to the system of ODE:

y′1(t) = 2y1(t), y1(0) = 1

y′2(t) = −3y2(t), y2(0) = −2

y′3(t) = 0, y3(0) = 3.

Example 3: Determine all the solutions to the system of ODE:{
y′1 = y2

y′2 = y1

Extra material: notes with solved Example 3.

55 System of ODE, Problem 1.
Problem 1: Solve the system of ODE y′ = Ay satisfying the initial condition y(0) = (1,−2, 3)T , where:

A =

2 5 −5
2 8 −8
2 11 −11

 .

Hint: We diagonalized this matrix in Video 203 in Part 2; eigenvalues in Video 186.

56 System of ODE, Problem 2.
Problem 2: Solve the system of ODE:

y′1(t) = 3y1(t) + 2y2(t)− 6y3(t)

y′2(t) = 2y1(t) + 3y2(t)− 6y3(t)

y′3(t) = y1(t) + 2y2(t)− 4y3(t)

with initial conditions y1(0) = 1, y2(0) = 2, y3(0) = 3.

57 System of ODE, Problem 3.
Problem 3: Determine the solution to the system of ODE:{

y′1 = y1 + y2

y′2 = 4y1 − 2y2

which satisfies the initial condition y1(0) = 1, y2(0) = 6.
Extra material: notes with solved Problem 3.



58 How to deal with higher order linear ODE?
Problem 4: Find general solution to the ODE y′′′ + 2y′′ − y′ − 2y = 0.
Extra material: notes with solved Problem 4.
Extra material: an article with a supplement to Video 81 in Part 2; inhomogenous second order linear ODE
with constant coefficients.
⋆ Example 0: Determine the general solution to y′′ + 3y′ + 2y = 0.

⋆ Example 1: Determine the general solution to y′′ + 3y′ + 2y = t2.

⋆ Example 2: Determine the general solution to y′′ + 3y′ + 2y = e2t.

59 Another way of looking at the same problem.
Problem 5: Determine the solution to the system of ODE:{

y′1 = y1 + 2y2

y′2 = 3y1 + 2y2

satisfying the initial conditions y1(0) = 0, y2(0) = −4.
Extra material: notes with solved Problem 5.
1. Extra material: an article with more theory and one example.
⋆ Section 1: Solution spaces and their generators.

⋆ Section 2: Matrix exponential and how to use it.

⋆ Example: Determine all the solutions to the system of ODE:{
x′
1 = −x2

x′
2 = x1

2. Extra material: an article with more solved problems on eigenvalues and ODE.

⋆ Extra problem 1: Solve the following system of differential equations:

{
y′1 = y1 + 4y2

y′2 = y1 + y2
where y1(0) = 1 and y2(0) = 2.

⋆ Extra problem 2: Solve the initial value problem

{
y′′′ + 4y′′ + y′ − 6y = 0

y(0) = y′(0) = y′′(0) = 1.

⋆ Extra problem 3: Solve the system of linear ODE{
x′
1 = x1 + 2x2

x′
2 = 4x1 + 3x2

⋆ Extra problem 4: Solve the initial value problem

{
y′′′ − 3y′′ + 2y′ = 0

y(0) = 1, y′(0) = 3, y′′(0) = 5.

C2 Inner product spaces

S7 Inner product as a generalization of dot product
You will learn: about other products with similar properties as dot product, and how they can look in different
vector spaces.



60 Between concrete and abstract.

61 Dot product in Part 1.

62 Dot product and orthogonality in Part 2.

63 From R2 to inner product spaces.

64 Inner product spaces.
Example: Inner products are examples of bi-linear forms.
Extra material: notes with the explanation of bi-linearity of inner products.

65 Euclidean n-space.
Example: Rn with dot product is an inner product space.
Extra material: proof that dot product satisfies IP1–IP4.

66 A very important remark about notation.

67 Inner and outer products.

68 Weighted Euclidean inner product, Problem 1.
Problem 1: Let u = (u1, u2) and v = (v1, v2) be vectors in R2. Show that the weighted Euclidean inner
product ⟨u,v⟩ = 3u1v1 + 2u2v2 satisfies the four inner product axioms.
Extra material: notes with the solution of Problem 1.

69 Remember transposed matrices?

70 Positive definite matrices.
Example: If A is a square invertible matrix, AAT is positive definite.
Extra material: notes with the proof.

71 Quadratic forms and how to read them.
Example: Compute φ(x) = xTAx where:

a) A =

(
2 1
1 3

)
b) A =

2 1 1
1 2 0
1 0 2

 .

Extra material: notes with the computations.

72 Matrix inner products on Rn, Problem 2.
Problem 2: Show that matrices defined in the previous video define an inner product ⟨x,y⟩ = xTAy.
Extra material: notes with the solution of Problem 2.

73 Gram matrix, Problem 3.

Problem 3: Compute Gram matrix G for the matrix inner product defined by C =

(
1 0
1 −1

)
.

Extra material: notes about Gram matrix from Video 72; Gram matrix for Euclidean inner product; Gram
matrix for weighted Euclidean inner product; solution to Example above.

74 Gram matrix, Problem 4.

Problem 4: We introduce the inner product in R2 by ⟨x,y⟩ = xTGy where G = 1
5

(
17 −6
−6 8

)
. Find a

matrix C which defines the same inner product as a matrix inner product. (Hint: find a symmetric C.)

75 Inner product in the space of continuous functions.
Extra material: notes with the proof that it really is inner product space.

76 Gram matrix for an inner product in the space Pn of polynomials.

77 Two inner products on the space of polynomials Pn.
Extra material: notes with the proof of IP4 for the evaluation inner product.



78 The evaluation inner products on P2, Problem 5.
Problem 5: Let P2 have the evaluation inner product at the points

x0 = −2, x1 = 0, x2 = 2.

Compute ⟨p,q⟩ for the polynomials p = p(x) = x2 and q = q(x) = 1+x. What is the value of the standard
inner product for these polynomials? Compute also the inner product from Video 76 for these polynomials,
with two methods: by computing by Gram matrix, and by computing the integral.
Extra material: notes with the solution of Problem 5.

79 Inner product in the space of m× n matrices.

80 Inner product in the space of square matrices.

Example: Compute the inner product for matrices A =

(
0 1
2 1

)
and B =

(
0 1
1 0

)
.

81 Inner product in the space of matrices, Problem 6.
Problem 6: Compute two different inner products (defined in Video 79 and in Video 80) for matrices

A =

(
2 1
−3 0

)
, B =

(
5 −1
0 4

)
.

Extra material: notes with the solution of Problem 6.

82 Frobenius inner product; Hadamard product of matrices.
Completing information to videos 79–81: Both inner products (from Videos 79 and 80) are the same, and
Frobenius inner product is defined for non-square matrices, too.

S8 Norm, distance, angles, and orthogonality in inner product spaces
You will learn: how to define geometric concepts in non-geometric setups.

83 Norm in inner product spaces.
Extra material: notes with the proof of properties of norm.

84 Weird geometry in the Euclidean space with weighted inner product.
Example: Draw the circle with radius 1 and centred at the origin in the metric induced by the weighted
inner product ⟨u, v⟩ = 1

9u1v1 +
1
4u2v2.

85 Frobenius norm of matrices, Problem 1.
Problem 1: Compute Frobenius norm of the matrices

A =

(
2 1
−3 0

)
, B =

(
5 −1
0 4

)
.

Extra material: notes with solved Problem 1.

86 Norm in the space of functions, Problem 2.
Problem 2: Compute the norm of p = p(x) = x and of q = q(x) = 2x2 on interval [0, 1].
Extra material: notes with solved Problem 2.

87 Distance in inner product spaces.
Extra material: notes with the proof of properties of distance.

88 Frobenius distance between matrices, Problem 3.
Problem 1: Compute Frobenius distance between the matrices

A =

(
2 1
−3 0

)
, B =

(
5 −1
0 4

)
.



Extra material: notes with solved Problem 3.

89 Distance in the space of functions, Problem 4.
Problem 4: Compute the distance between p = p(x) = x and q = q(x) = x2, and between q = q(x) = x2

and r = r(x) = x3 on interval [0, 1].

90 First step to defining abstract angles.

91 Cauchy–Schwarz inequality, proof 1.
Extra material: notes with the proof of Cauchy–Schwarz inequality.

92 Cauchy–Schwarz inequality, proof 2.
Extra material: notes with another proof of Cauchy–Schwarz inequality.

93 Cauchy–Schwarz inequality in the space of continuous functions.

94 Angles in inner product spaces.

95 More weird geometry: Angles in inner product spaces, Problem 5.
Problem 5: Compute the angle between the polynomials p(x) = x and q(x) = 1 in the inner product space
of all the polynomials on the interval [0, 1], with inner product ⟨p,q⟩ =

∫ 1

0
p(x)q(x) dx.

96 Angles in inner product spaces, Problem 6.
Problem 6: Compute the angle between the polynomials p(x) = x and q(x) = 2x2 in the inner product
space of all the polynomials on the interval [0, 1], with inner product ⟨p,q⟩ =

∫ 1

0
p(x)q(x) dx. (The norms

were computed in Video 86.)

97 Orthogonality in inner product spaces.

98 Orthogonality in inner product spaces depends on inner product.
Example: Polynomials p = p(x) = x2 and q = q(x) = 1 + x form different angles in different IP spaces:
a) P2 with the evaluation inner product at the points x0 = −2, x1 = 0, x2 = 2,

b) P2 with standard inner product,

c) P2 with the integral inner product defined in V. 75 & 76 (with the factor 1
2 and on the interval [−1, 1]).

All the necessary computations were made in Video 78.

99 Orthogonality in inner product spaces, Problem 7.
Problem 7: Determine whether the angle between matrices A and B in the IP space with Frobenius IP is
acute, right, or obtuse:

A =

(
0 1
2 3

)
, B =

(
2 3
5 −5

)
.

Extra material: notes with solved Problem 7.

100 What is triangle inequality?

101 Triangle inequality in inner product spaces.
Extra material: notes with the proof of triangle inequality in inner product spaces.
Example: Illustrate the triangle inequality in the IP space of matrices with Frobenius IP on the example
from Video 88:

A =

(
2 1
−3 0

)
, B =

(
5 −1
0 4

)
.

102 Generalized Theorem of Pythagoras.
Extra material: notes with the proof of Theorem of Pythagoras in inner product spaces.

103 Generalized Theorem of Pythagoras, Problem 8.



Problem 8: Illustrate Pythagorean theorem in the IP space of matrices with Frobenius IP on A and B:

A =

(
3 2 5
0 1 −1

)
, B =

(
1 −5 2
7 0 3

)
.

.
Extra material: notes with solved Problem 8.

104 Generalized Theorem of Pythagoras, Problem 9.
Problem 9: Illustrate Pythagorean theorem in P2 with standard IP, using (orthogonal, by computations
from Video 98) polynomials p = p(x) = x2 and q = q(x) = 1 + x.
Extra material: notes with solved Problem 9.

105 Generalized Theorem of Pythagoras, Problem 10.
Problem 10: Show that the same polynomials as in V104 (p = p(x) = x2 and q = q(x) = 1 + x) are not
orthogonal with respect to the integral IP in P2 (defined in V76). Show that ∥p+ q∥2 ̸= ∥p∥2 + ∥q∥2.
Extra material: notes with solved Problem 10.

S9 Projections and Gram–Schmidt process in various inner product spaces
You will learn: apply Gram–Schmidt process in inner product spaces different from Rn (which were already
covered in Part 2); work with projections on subspaces.

106 Different but still awesome!

107 ON bases in IP spaces.

108 Why does normalizing work in the same way in all IP spaces?

109 Orthonormal sets of continuous functions, Problem 1.
Problem 1: Show that the set of functions {f, g, h}, where f(x) = 1, g(x) = sinx, h(x) = cosx, is
orthogonal in the inner product space of all continuous functions on the interval [−π, π], i.e. C[−π, π], with
inner product ⟨f, g⟩ =

∫ π

−π
f(x)g(x) dx. Normalize the functions.

Extra material: notes with solved Problem 1.
Extra material: an article about computing some trigonometric integrals.

110 Orthogonal complements, Problem 2.
Problem 2: Find a first degree polynomial q(x) that is orthogonal to the polynomial p(x) = 1−x in the IP
space of all the polynomials on the interval [0, 1] with inner product ⟨p,q⟩ =

∫ 1

0
p(x)q(x) dx.

Extra material: notes with solved Problem 2.

111 Orthogonal sets are linearly independent, Problem 3.
Problem 3: Show that the polynomials p(x) = 1−x and q(x) = 1− 3x from V110 are linearly independent.
Extra material: notes with solved Problem 3.

112 Coordinates in orthogonal bases in IP spaces.

113 Projections and orthogonal decomposition in IP spaces.
Extra material: notes with the proof of the decomposition formula in inner product spaces.

114 Orthogonal projections on subspaces of an IP space, Problem 4.

Problem 4: The IP space P3 of all the polynomials of degree ⩽ 3 with inner product ⟨p,q⟩ =
∫ 1

0
p(x)q(x) dx

has P2 as subspace. The following polynomials form an ON-basis in P2:

p1(x) = 1, p2(x) =
√
3(2x− 1), p3(x) =

√
5(6x2 − 6x+ 1).

a) Compute the orthogonal projection of the polynomial x3 on the subspace P2.



b) Find a polynomial q of degree 3, s.t.
∫ 1

0
p(x)q(x) dx = 0 for all p ∈ P2 (and, later, the orthogonal

complement for P2 in P3).
Extra material: notes with solved Problem 4.

115 Orthogonal projections on subspaces of an IP space, Problem 5.

Problem 5: Consider the IP space P of all the polynomials, with inner product ⟨p,q⟩ =
∫ 1

−1
p(x)q(x) dx.

Polynomials p = p(x) = x and q = q(x) = 3x2 − 1 belong to this space.
a) Compute the norms ∥p∥ and ∥q∥.
b) Show that the polynomials p and q are orthogonal.

c) Compute the orthogonal projection of f = f(x) = x+ 1 on the subspace of P generated by p and q.
Extra material: notes with solved Problem 5.

116 Gram–Schmidt in IP spaces.

117 Gram–Schmidt in IP spaces, Problem 6: Legendre polynomials.
Problem 6: Consider the vector space P2 of all the polynomials with degree ⩽ 2, with inner product
⟨p,q⟩ =

∫ 1

−1
p(x)q(x) dx. Apply the Gram–Schmidt process to transform the standard basis {1, x, x2} for

P2 into an orthogonal basis {ϕ1(x), ϕ2(x), ϕ3(x)}. The polynomials in this new basis are called Legendre
polynomials.
Extra material: notes with solved Problem 6.

118 Gram–Schmidt in IP spaces, Problem 7.
Problem 7: Consider the vector space P2 of all the polynomials with degree ⩽ 2, with inner product

⟨p,q⟩ = p(0)q(0) + p(1)q(1) + p(2)q(2).

Apply the Gram–Schmidt process to transform the standard basis {1, x, x2} for P2 into an ON-basis.
Extra material: notes with solved Problem 7.

119 Easy computations of IP in ON bases, Problem 8.

Problem 8: Consider the IP space P of all the polynomials, with inner product ⟨p,q⟩ =
∫ 1

0
p(x)q(x) dx.

Polynomials q1(x) = 1, q2(x) =
√
3(2x− 1), and q3(x) =

√
5(6x2 − 6x+ 1)

are orthonormal. Determine the angle β between the polynomials v = v(x) and w = w(x) defined as

v(x) = (1−
√
3) + 2

√
3x, w(x) = (−

√
3 +

√
5) + (2

√
3− 6

√
5)x+ 6

√
5x2.

Extra material: notes with solved Problem 8.
Extra material: one more solved problem.

⋆ Extra problem: Let M2×2(R) be equipped with the inner product〈(
x1 x2

x3 x4

)
,

(
y1 y2
y3 y4

)〉
= x1y1 +

x2y2
2

+
x3y3
3

+
x4y4
4

.

a) Find an ON-basis of M2×2(R) (you have to prove that your basis is ON).

b) Let U ⊂ M2×2(R) be the subspace of all 2× 2 matrices such that their diagonal elements are zero. In
other words

U =
{(

a b
c d

)
; a = 0, d = 0

}
.

Find projU

(
1 −1
2 3

)
.

c) Find a non-zero vector in U⊥.



S10 Min-max problems, best approximations, and least squares
You will learn: solve some simple min-max problems with help of Cauchy–Schwarz inequality, find the shortest
distance to subspaces in IP spaces, handle inconsistent systems of linear equations.

120 In this section.

121 Min-max, Problem 1.
Problem 1: Given x2+ y2 ⩽ 16, what is the maximum value for 3x+4y? Hint: Cauchy–Schwarz inequality.
Extra material: notes with solved Problem 1.

122 Min-max, Problem 2.
Problem 2: Given x2 + y2 + z2 = 1, what is the maximum value for x + 4y + 8z? Hint: Cauchy–Schwarz
inequality.
Extra material: notes with solved Problem 2.

123 Min-max, Problem 3.
Problem 3: Given x2

1 + x2
2 + x2

3 + x2
4 = 1, what is the maximum value for x1 − x2 − 3x3 + 5x4? Hint:

Cauchy–Schwarz inequality.
Extra material: notes with solved Problem 3.

124 Min-max, Problem 4.
Problem 4: Given x2 + y2 + 4z2 = 4, what is the minimum and maximum value for x − y + z? Hint:
Cauchy–Schwarz inequality.
Extra material: notes with solved Problem 4.

125 Min-max, Problem 5.
Problem 5: Determine the max and the min values of 2x1+3x2−2x3 with constraint x2

1+x2
2+(x2−x3)

2 = 1
(i.e., on an ellipsoid), using Cauchy–Schwarz inequality for the following inner product on R3:
⟨x,y⟩ = x1y1 + x2y2 + (x2 − x3)(y2 − y3).
Extra material: notes with solved Problem 5.

126 Another look at orthogonal projections as matrix transformations.

127 Orthogonal projections, Problem 6.
Problem 6: Let M = {(x, y, z) ∈ E3; x−y−z = 0, x+y+2z = 0}. Operator T : E3 → E3 is the orthogonal
projection on M . Compute the matrix P of T , and the matrix Q of the orthogonal projection on M⊥.

128 Orthogonal projections, Problem 7.
Problem 7: Given the following subspace of E4: M = span{(1, 1, 1, 1)t, (1, 1, 0,−2)t}. Determine the stan-
dard matrix of the orthogonal projection on M .

129 Shortest distance from a subspace.
Extra material: notes with a proof of Best Approximation Theorem.

130 Shortest distance, Problem 8.
Problem 8: Continuation of Problem 7: Given the following subspace of E4: M = span{(1, 1, 1, 1)t, (1, 1, 0,−2)t}.
Determine the standard matrix Q of the orthogonal projection on M⊥. Decompose w = (1, 2, 3, 0)t as
w = u+ v where u ∈ M and v ∈ M⊥. Determine the shortest distance from w to M .

131 Shortest distance, Problem 9.
Problem 9: Given a subspace M of E4: M = {(x1, x2, x3, x4) ∈ E4; 2x1 + x2 − x3 = 0, x1 + x2 + x4 = 0}.
Determine ON-bases in M and M⊥. Decompose w = (1, 0, 0, 0)t as w = u+v where u ∈ M and v ∈ M⊥.
Determine the shortest distance from w to M and from w to M⊥.

132 Shortest distance, Problem 10.
Continuation from Video 118. Compute the shortest distance from the polynomial x2 to the subspace
P1 ⊂ P2 containing polynomials of degree 1 or 0.



133 Solvability of systems of equations in terms of the column space.

134 Least squares solution and residual vector.

135 Four fundamental matrix spaces and the normal equation. Derivation of two methods for finding least
squares solutions.

136 Least squares, Problem 11, by normal equation.
Problem 11: Find a least squares solution to the inconsistent system Ax = b for

A =

4 0
0 2
1 1

 , b =

 2
0
11


using the method by the normal equation.
Extra material: notes with solved Problem 11.

137 Least squares, Problem 11, by projection.
Problem 11: Find a least squares solution to the inconsistent system Ax = b for

A =

4 0
0 2
1 1

 , b =

 2
0
11


using the method by projection on the column space.
Extra material: notes with solved Problem 11.

138 Least squares straight line fit, Problem 12.
Problem 12: Find the least square straight line fit to the four points: (0, 2), (1, 1), (2, 1), and (3, 4).
Extra material: notes with solved Problem 12.

139 Least squares, fitting a quadratic curve to data, Problem 13.
Problem 13: Fit a quadratic curve to the four points: (0, 2), (1, 1), (2, 1), and (3, 4).
Extra material: notes with solved Problem 13.

C3 Symmetric matrices and quadratic forms

S11 Diagonalization of symmetric matrices
You will learn: about various nice properties of symmetric matrices, and about orthogonal diagonalization.

140 The link between symmetric matrices and quadratic forms, Problem 1.
Problem 1: Write down the symmetric matrices corresponding to the following quadratic forms:
a) φ(x, y) = x2 − 2xy + y2

b) φ(x, y, z) = x2 + 2y2 − 3z2 − 2xy + 6xz

c) φ(x1, x2, x3, x4) = 5x2
1 − 7x2

3 + 9x2
4 − 5x1x2 + 6x1x4 − 7x2x3 + 8x3x4.

Extra material: notes with solved Problem 1.

141 Some properties of symmetric matrices.

142 Eigenvectors corresponding to distinct eigenvalues for a symmetric matrix are orthogonal.

143 Complex numbers: a brief repetition.

144 Eigenvalues for a (real) symmetric matrix are real.

Example: Matrix A =

[
0 −1
1 0

]
with real entries has two complex eigenvalues and two eigenvectors in C2.



Extra material: notes with the proof that all (real) symmetric n× n matrices have n real eigenvalues.

145 Orthogonal diagonalization.

146 If a matrix is orthogonally diagonalizable, it is symmetric.

147 The Spectral Theorem: Each symmetric matrix is orthogonally diagonalizable.
Extra material: notes with a proof of Lemma 2.

148 Orthogonal diagonalization: how to do it.

149 Orthogonal diagonalization, Problem 2.
Problem 2: The linear operator TA : R3 → R3 is defined by the following matrix:

A =

2 1 a
1 2 −a
a 0 1

 .

For which values of a ∈ R is TA orthogonally diagonalizable? Perform the diagonalization for these a.
(We solved this problem for diagonalizable—but not orthogonally diagonalizable—matrices in Video 14.)

150 Spectral decomposition for symmetric matrices, Problem 3. Three ways of looking at linear transformations
defined by symmetric matrices.

Problem 3: Perform and illustrate geometrically spectral decomposition of the matrix A =

[
1 2
2 −2

]
.

Make a geometrical illustration (in three different ways) for Ax with x = (1, 1)T .

151 Orthogonal diagonalization, Problem 4.
Problem 4: Is it possible to construct a symmetric 2× 2 matrix which has:

a) eigenvalues λ1 = 3 and λ2 = 2, and eigenvectors v1 =

[
1
1

]
and v2 =

[
1
2

]
;

b) eigenvalues λ1 = 3 and λ2 = 2, and eigenvectors v1 =

[
−2
1

]
and v2 =

[
1
2

]
;

c) one eigenvalue λ1 = 5 with algebraic multiplicity 2, and eigenvectors v1 =

[
1
1

]
and v2 =

[
1
2

]
;

d) one eigenvalue λ1 = 5 with algebraic multiplicity 2, and eigenspace Eλ1
= span{

[
1
1

]
}.

Extra material: notes with solved Problem 4.

152 Orthogonal diagonalization, Problem 5.
Problem 5: Determine a symmetric 2 × 2 matrix which has one eigenvalue λ1 = 1 with corresponding

eigenvector v1 =

[
1
1

]
, and the second eigenvalue λ2 = 2.

Extra material: notes with solved Problem 5.

153 Orthogonal diagonalization, Problem 6.
Problem 6: Is it possible to construct a 3× 3 symmetric matrix with one eigenvalue λ1 = 3, and the second
one, double λ2,3 = 2 (i.e., with algebraic multiplicity 2), and the corresponding eigenspaces

Eλ1=3 = span{

−2
0
2

} and Eλ=2 = span{

−1
2
−1

 ,

02
0

}.
Extra material: notes with solved Problem 6.

154 Orthogonal diagonalization, Problem 7.
Problem 7: Is it possible to construct a 3× 3 symmetric matrix with one eigenvalue λ1 = 3, and the second



one, double λ2,3 = 2 (i.e., with algebraic multiplicity 2), and the corresponding eigenspaces

Eλ1=3 = span{

−2
0
2

} and Eλ=2 = span{

−1
2
−1

 ,

01
1

}.
Extra material: notes with solved Problem 7.

155 Spectral decomposition, Problem 8.
Problem 8: Let F : R3 → R3 be defined as F (x) = (4x − 4y + 2z, −4x + 4y + 2z, 2x + 2y + 7z)t. Show
that F is orthogonally diagonalizable (which is the same as to show that the standard matrix A of F is
orthogonally diagonalizable). Determine an ON-basis in each eigenspace of F , an orthogonal matrix B and
a diagonal matrix D s.t. A = BDB−1 = BDBt. Show that A can be represented as

A = λ1P1 + λ2P2 + λ3P3

where

λ1, λ2, λ3 ∈ R, P1 + P2 + P3 = I, P 2
1 = P1 = P t

1 , P 2
2 = P2 = P t

2 , P 2
3 = P3 = P t

3

and
P1P2 = P2P1 = P1P3 = P3P1 = P2P3 = P3P2 = O.

156 Positive and negative definite matrices, semidefinite and indefinite matrices, Problem 9.
Problem 9: A warning: all plus signs in a matrix don’t guarantee its positive definiteness. Show it on the
following examples:

A =

(
1 1

2
1
2 1

)
, A =

(
1 1
1 1

8

)
, A =

(
1 1
1 1

)
.

Extra material: notes with solved Problem 9.
Extra material: an article with more solved problems on definiteness of symmetric matrices, determined by
completing the square.

⋆ Extra problem 1: Determine whether A =

(
−6 4
4 −4

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 2: Determine whether A =

(
−2 4
4 −4

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 3: Determine whether A =

(
12 −4
−4 4

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 4: Determine whether A =

(
6 3
3 2

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 5: Determine whether A =

(
6 3
3 1

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 6: Determine whether A =

(
6 2
2 2

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.

⋆ Extra problem 7: Determine whether A =

(
−2 2
2 2

)
is positive/negative definite, semidefinite, or

indefinite. Use the method of completing the square.



⋆ Extra problem 8: Determine whether A =

 6 −6 −6
−6 8 8
−6 8 12

 is positive/negative definite, semidefi-

nite, or indefinite. Use the method of completing the square.

157 The wonderful strength of an orthogonally diagonalized matrix.

158 Three tests for definiteness of symmetric matrices, Problem 10.

Problem 10: Show that A =

2 1 0
1 2 0
0 0 1

 is positive definite. Use three methods:

1. completing the square,

2. eigenvalue test,

3. determinant test.
Extra material: notes with solved Problem 10.

159 Symmetric square roots of symmetric positive definite matrices; singular values; Problem 11.

Problem 11: (See Video 74): Let G = 1
5

(
37 −16
−16 13

)
. Find a symmetric matrix C such that C2 = G.

S12 Quadratic forms and their classification
You will learn: how to describe (geometrically) and recognise (from their equation) quadratic curves and surfaces.

160 The correspondence between quadratic forms and symmetric matrices is 1-to-1.
Extra material: notes with a proof of the theorem about 1-to-1 correspondence, and an example showing
that representation by non-symmetric matrices is not unique.

161 Completing the square is not unique.
Example: Use the form q(x, y) = 2x2 − 4xy + y2 to show that completing the square is not unique.
Extra material: notes with solved example.

162 What kind of questions we want to answer.

163 Quadratic forms in two variables, Problem 1.
Problem 1: Let c > 0. What kind of set is described by q(x) = h, where the quadratic form

q(x) = xTAx is defined by A =

(
c 0
0 c

)
?

164 Quadratic forms in two variables, Problem 2.
Problem 2: Let a, b, λ1, λ2 be some positive constants, and

A =

(
1
a2 0
0 1

b2

)
, B =

(
λ1 0
0 λ2

)
, C =

(
c11 c12
c21 c22

)
,

where C is any symmetric matrix with eigenvalues λ1 and λ2. What kind of set is described by q(x) = 1,
where the quadratic form q(x) = xTMx is defined by M = A, M = B, and M = C?

165 Quadratic curves, generally.

167 Quadratic curves as conic sections.

166 Quadratic curves by distances; shortest distance from the origin.

168 Principal axes; The shortest distance from the origin, Problem 3.

Problem 3: Plot the curve described by xTAx = 36, where A =

(
8 2
2 5

)
.

169 Classification of quadratic forms in two variables.



Example: The equation 13x2
1+13x2

2− 10x1x2 = 72 describes a curve in the plane. Draw the curve and find
the shortest and the longest distance from a point on the curve to the origin.

170 Classification of curves, Problem 4.
Problem 4: The equation 19x2

1 + 11x2
2 − 6x1x2 = 10 describes a curve in the plane. Draw the curve and

find the shortest and the longest distance from a point on the curve to the origin, and the coordinates (in
the standard basis) of the points where these values occur.
Extra material: notes with solved Problem 4.

171 Classification of curves, Problem 5.
Problem 5: Find principal axes for the quadratic form q(x1, x2) = x2

1 − 4x1x2 + x2
2. Draw the curve

q(x1, x2) = 1 and its counterpart in the standard position. Can you find the shortest and the longest
distance from the curve to the origin?
Extra material: notes with solved Problem 5.

172 Different roles of symmetric matrices (back to Videos 150 and 168), Problem 6.

Problem 6: Let A =

(
1 2
2 −2

)
.

a) We have seen in Video 150 that TA(x) = Ax maps the unit circle on an ellipse with principal axes in
the direction of the eigenvectors of A. Find an equation of this ellipse.

b) Consider the symmetric matrix B generating the ellipse from the previous question. Draw the curve.

c) Find the curve defined by q(x) = xTAx = 1 for the original matrix. What kind of curve do you get?

d) What do the curves from b) and c) have in common?
Extra material: notes with solved Problem 6.

173 Classification of curves, Problem 7.
Problem 7: Find principal axes for the quadratic form q(x) = xTAx = 6x2

1 + 4x1x2 + 3x2
2. Draw the curve

q(x1, x2) = 1 and its counterpart in the standard position. Compare the curve to the image of the unit
circle under TAx = Ax.
Extra material: notes with solved Problem 7.

174 Generally about quadratic surfaces.

175 Some nice visuals on quadratic surfaces.

176 Quadratic surfaces, shortest distance, Problem 8.
Example: Determine the shortest distance from the origin:
a) for the ellipsoid 4x2 + 9y2 + z2 = 36,

b) for the hyperboloid of one sheet 4x2 − 9y2 + z2 = 36,

c) for the hyperboloid of two sheets −4x2 − 9y2 + z2 = 36.

Problem 8: Surface Y is described as the set of all the points in E3 satisfying the equation

11x2 + 11y2 + 8z2 + 2xy + 8xz + 8yz = 4.

Determine what kind of surface it is, the shortest distance from the surface to the origin, and the coordinates
of the closest points (in the standard basis).
Extra material: notes with solved Example, and with solved Problem 8.

177 Quadratic surfaces, Problem 9.
Problem 9: Surface Y is described as the set of all the points in E3 satisfying the equation

4x2 + 4y2 + 7z2 − 8xy + 4xz + 4yz = 2.

Determine what kind of surface it is, the shortest distance from the surface to the origin, and the coordinates
of the closest points (in the standard basis). Show that the surface is a rotational surface (a surface of



revolution) and determine the axis of this rotation.
Extra material: notes with solved Problem 9.

178 Quadratic surfaces, Problem 10.
Problem 10: Determine, for each value of a ∈ R, the type of the surface

−2x2 + 4xy + 2xz + y2 + 4yz − 2z2 = a.

Determine the shortest distance from the surface to the origin. For which values of a is it a surface of
revolution? Determine the directional vector of the rotation axis for all such a.
Extra material: notes with solved Problem 10, and (in the beginning of the document) with a supplement
to Video 177, clarifying the part about the coordinates of the points with shortest distance to the origin.

179 Law of inertia for quadratic forms; Signature of a form, Problem 11.
Problem 11: Perform the symmetric matrix operations in order to determine the signature of the quadratic

form defined by the matrix

3 2 4
2 0 2
4 2 3

.

Extra material: notes with solved Problem 11.

180 Four methods of determining definiteness; Problem 12.
Problem 12: Consider the quadratic form

h(x1, x2, x3) = −x2
1 + 2x1x2 + x2

2 − 4x2x3.

Use Lagrange’s method of systematic completing the square in order to establish the type of the surface
this form generates, and the signature of the form.
Extra material: notes with solved Problem 12.
Extra material: an article with two solved problems on quadratic forms.
⋆ Problem 1: Let q = x2

1 + 3x2
2 + 19x2

4 − 2x1x2 + 4x1x3 + 2x1x4 − 6x2x4 − 12x3x4. Find an equivalent
form with no mixed products by using the method of symmetric matrix operations.

⋆ Problem 2: Let q = −4x2
1 − 8x2

2 − 4x2
3 + 4x1x2 − 12x1x3 + 4x2x3. Describe the surface geometrically,

find the shortest distance from the surface to the origin, and the coordinates of the closest points.

S13 Constrained optimization
You will learn: how to determine the range of quadratic forms on (generalized) unit spheres in Rn.

181 The theory for this section.

182 Constrained optimization, Problem 1.
Problem 1: (See Video 173.) Find the largest and the smallest value of the quadratic form q(x) = xTAx =
6x2

1 + 4x1x2 + 3x2
2 for arguments on the unit circle ∥x∥ = 1. Make an illustration.

183 Constrained optimization, Problem 2.
Problem 2: (See Video 172.) Find the largest and the smallest value of the quadratic form q(x) = xTAx =
x2
1 + 4x1x2 − 2x2

2 for arguments on the unit circle ∥x∥ = 1. Make an illustration.

184 Constrained optimization, Problem 3.
Problem 3: Find the largest and the smallest value of the quadratic form q(x, y, z) = x2 + y2 − 4xy + z2

for arguments on the unit sphere x2 + y2 + z2 = 1.

185 Constrained optimization, Problem 4.
Problem 4: Find the largest and the smallest value of the quadratic form q(x1, x2, x3) for arguments on the
unit sphere x2

1 + x2
2 + x2

3 = 1. Here q(x1, x2, x3) = 5x2
1 + 14x1x2 + 4x1x3 + 5x2

2 − 4x2x3 − 4x2
3.



C4 The Grand Finale

S14 Singular value decomposition
You will learn: about singular value decomposition: how it works and why it works; about pseudoinverses.

186 All our roads led us to SVD.

187 Why do we need SVD?

188 We know really a lot about ATA for any rectangular matrix A.

189 New facts about ATA: eigenvalues and eigenvectors. Singular values of A.
Extra material: an article with proof that ATA and AAT have the same non-zero eigenvalues.
Extra material: notes with proof that ATA and AAT are positive semi-definite; singular values of A are
norms of Avi where vi are eigenvectors for ATA.

190 ON-bases containing only eigenvectors of certain matrix products.
Extra material: notes with proof of the theorem above.

191 Singular value decomposition with proof and geometric interpretation.
Extra material: notes with proof of the theorem above.
Fun fact: Given SVD of a matrix A, find the SVD of ATA and AAT . (Note: as these matrices are symmetric
and positive semi-definite, their SVD is also their eigendecomposition.)

192 SVD, reduced singular value decomposition, Problem 1.

Problem 1: Find the singular value decomposition and reduced singular value decomposition of A =

1 1
0 1
1 0

.

Extra material: notes with solved Problem 1.

193 SVD, Problem 2.

Problem 2: Find the singular value decomposition of A =

[
4 11 14
8 7 −2

]
.

Extra material: notes with solved Problem 2.

194 More new facts about ATA: six equivalent statements.
Extra material: notes with proof of the theorem above.

195 Least squares, SVD, and pseudoinverse (Moore–Penrose inverse).

196 Pseudoinverse, Problem 3.

Problem 3: Compute the pseudoinverse for the matrix A =

1 1
0 1
1 0

 from Video 192, using two methods of

computation (for one of the methods, use the results from Video 192). Verify that the nullspace of AT is
mapped by A† onto the zero vector of R2.
Extra material: notes with solved Problem 3.

197 SVD and Fundamental Theorem of Linear Algebra.

S15 Wrap-up Linear Algebra and Geometry

198 Linear Algebra and Geometry, Wrap-up.
199 So, what’s next?
200 Final words. There is some more information on the next page.



S16 Extras
You will learn: about all the courses we offer, and where to find discount coupons. You will also get a glimpse
into our plans for future courses, with approximate (very hypothetical!) release dates.

B Bonus lecture.
Extra material 1: a pdf with all the links to our courses, and coupon codes.
Extra material 2: a pdf with an advice about optimal order of studying our courses.
Extra material 3: a pdf with information about course books, and how to get more practice.


