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An extremely detailed table of contents; the videos (titles in green) are numbered

In blue: problems solved on an iPad (the solving process presented for the students; active problem solving)
In red: solved problems demonstrated during a presentation (a walk-through; passive problem solving)
In magenta: additional problems solved in written articles (added as resources).

C1 Abstract vector spaces and related stuff

S1 Introduction to the course
1 Introduction to the course. Extra material: this list with all the movies and problems.

S2 Real vector spaces and their subspaces
You will learn: the definition of vector spaces and the way of reasoning around the axioms; determine whether
a subset of a vector space is a subspace or not.

2 From abstract to concrete.

3 From concrete to abstract.

4 Our prototype.

5 Formal definition of vector spaces. Example 1: Rn.
Extra material: some notes from the iPad.

6 Vector spaces, Example 2: m× n matrices with real entries.
Example 2: The set Rm×n (another notation: Mm×n(R)) of all the m-by-n matrices with real entries.

7 Vector spaces, Example 3: real-valued functions on some interval.
Example 3: The set F [a, b] of all the functions f : [a, b] → R for given constants a and b s.t. a < b.
Extra material: some notes from the iPad.

8 Vector spaces, Example 4: complex numbers.
Example 4: The set C of all complex numbers is a vector space over R.
Extra material: some notes from the iPad.

9 Cancellation property.
Let V be a vector space. Show that the following property (Cancellation) holds: if u, v and w are any
elements of V such that v + u = v +w then u = w.
Extra material: some notes from the iPad.

10 Two properties of vector spaces; Definition of difference.
Let V be a vector space. Show that its neutral element is unique. Show also that the additive inverse to
each element of V is unique.
Extra material: some notes from the iPad.

11 Some properties of vector spaces.
Let V be a vector space with neutral element 0. Let v be any element in V and α ∈ R. Show that:
a) 0 · v = 0

b) α · 0 = 0

c) (−1) · v = −v

d) if α · v = 0 then either α = 0 or v = 0 (or both).



The last law is called Zero-product property.
Extra material: some notes from the iPad.

12 What is a subspace.
Observation 1: Intersection of subspaces of V is a subspace of V .

13 All the subspaces in R2.
Observation 2: Union of subspaces of V is usually not a subspace of V .

14 All the subspaces in R3.

15 Subspaces, Problem 1.
Problem 1: Which of the following sets are subspaces of R3?:
a) {(a, 0, 0); a ∈ R}
b) {(a, 1, 0); a ∈ R}
c) {(a, b, c); b = a+ c}.

16 Subspaces, Problem 2.
Problem 2: Which of the following sets are subspaces of F [−∞,∞]?:
a) the set of all continuous functions C0[−∞,∞]

b) the set of all discontinuous functions

c) the set of all polynomials R[x]

d) the set of all polynomials of degree 2

e) the set of all polynomials of degree less than or equal to 2

f) the set of all polynomials p ∈ R[x] s.t. p(5) = 0

g) the set of all even (or: all odd) functions.
Extra material: notes with solution to Problem 2.

17 Subspaces, Problem 3.
Problem 3: Which of the following sets are subspaces of Rn×n?:
a) all diagonal matrices

b) all symmetrical matrices

c) all matrices with determinant equal to 1

d) all matrices with determinant 0 (all singular/non-invertible matrices)

e) all matrices with trace equal to 0

f) all matrices with trace equal to 1.
Extra material: notes with solution to Problem 3.

18 Subspaces, Problem 4.
Problem 4: If u0 ∈ Rn then the set {v ∈ Rn; u0 · v = 0} is a subspace.
Extra material: notes with solution to Problem 4.

S3 Linear combinations and linear independence
You will learn: the concept of linear combination and span, linearly dependent and independent sets; apply
Gaussian elimination for determining whether a set is linearly independent; geometrical interpretation of linear
dependence and linear independence.

19 Our unifying example.



20 Linear combinations in Part 1.

21 Linear combinations, new stuff. Example 1.
Example 1: Linear combinations in Rn.

22 Linear combinations. Example 2.
Example 2: Linear combinations in the space of 2-by-2 matrices (all of them, and symmetric ones).

23 Linear combinations, Problem 1.
Problem 1: Are the following vectors linear combinations of u = (1,−3, 2) and v = (1, 0,−4)?:
a) (0,−3, 6)

b) (3,−9,−2).
Give a geometrical interpretation of your answers.
Extra material: notes with solution to Problem 1.

24 Linear combinations, Problem 2.
Problem 2: Express the following vectors as linear combinations of vectors u = (2, 1, 4), v = (1,−1, 3) and
w = (3, 2, 5):
a) (−9,−7,−15)

b) (6, 11, 6)

c) (0, 0, 0)

d) (7, 8, 9).
Extra material: notes with solution to Problem 2.

25 What is a span, definition and some examples.
Some examples of span in R2 and R3.

26 Span, Problem 3.
Problem 3: Let M denote the subspace of R4 spanned by
u1 = (2, 1, 1, 1), u2 = (1, 1, 0, 0), u3 = (3, 1, 2, 2), u4 = (1, 1, 1, 0) and u5 = (1, 0,−2, 1).
For which values of the parameter a does vector v = (3 + a, 3, 3 + a, 2 + 2a) belong to M?
Extra material: notes with solution to Problem 3.

27 Span, Problem 4.
Problem 4: Let M denote the subspace of R4 spanned by
u1 = (1, 2, 1,−2), u2 = (−2,−1, 3, 1), u3 = (−1, 1, 4,−1), u4 = (3, 3,−2,−3) and u5 = (1, 0,−1, 0).
For which values of the parameter a does vector v = (a,−1, 5− a, 1) belong to M?
Extra material: notes with solution to Problem 4.

28 Span, Problem 5.
Problem 5: Let M denote the subspace of R4 spanned by
u1 = (1, 2, 1, 0), u2 = (−2,−1, 3, 0), u3 = (−1, 1, 4, 0), u4 = (3, 3,−2, 0) and u5 = (1, 0,−1, 0).
For which values of the parameter a does vector v = (a,−1, 5− a, 1) belong to M?

29 What do we mean by trivial?

30 Linear independence and linear dependence.
A set of vectors is linearly dependent iff some of the vectors in the set is a linear combination of the other
vectors.

31 Geometry of linear independence and linear dependence.

32 An important remark on linear independence in Rn.

33 Linearly independent generators, Problem 6.



Problem 6: Find a linearly independent set generating the row vectors of matrix A:

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 .

Extra material: notes with solved Problem 6.

34 Linear independence in the set of matrices, Problem 7.
Problem 7: Find a linearly independent set generating:
a) the set of all symmetrical matrices in R3×3

b) the following subset of R3×3: the set of all matricesx 0 y
0 x− y x+ z
y x− z x

, where x, y, z ∈ R.

Extra material: notes with solved Problem 7.

35 Linear independence in C0[−∞,∞], Problem 8.
Problem 8: Show that:
a) the polynomials p1(t) = 1, p2(t) = t, p3(t) = t2 are linearly independent in C0[−∞,∞] and that they

generate the set of all the polynomials of degree less than or equal to 2,

b) the polynomials q1(t) = 1, q2(t) = t, q3(t) = 4− t are linearly dependent in C0[−∞,∞].
Extra material: notes with solved Problem 8.

36 Vandermonde determinant and polynomials.
Example: Show that the set S = {1, t, t2, . . . , tn−1} is linearly independent in C0[−∞,∞] and that it
generates the set of all the polynomials of degree less than or equal to n− 1.

37 Linear independence in C∞(R), Problem 9.
Problem 9: Show that the set {et, e2t, e3t} is linearly independent in C∞(R).
Extra material: notes with solved Problem 9.

38 Wronskian and linear independence in C∞(R).
Back to Problem 8a: Use Wronskian to show that the polynomials p1(t) = 1, p2(t) = t, p3(t) = t2 and
p4(t) = t3 are linearly independent in C∞(R).

39 Linear independence in C∞(R), Problem 10.
Problem 10: Show that the set {1, cos t, sin t} is linearly independent in C∞(R).
Extra material: notes with solved Problem 10.

40 Linear independence in C∞(R), Problem 11.
Problem 11: Show that the set {eλ1t, eλ2t, . . . , eλnt} (where λi for i = 1, 2, . . . , n are distinct real numbers)
is linearly independent in C∞(R).
Extra material: notes with solved Problem 11.

S4 Coordinates, basis, and dimension
You will learn: about the concept of basis for a vector space, the coordinates w.r.t. a given basis, and the
dimension of a vector space; you will learn how to apply the determinant test for determining whether a set of
n vectors is a basis of Rn.

41 What is a basis and dimension?

42 Bases in the 3-space, Problem 1.



Problem 1: Which of the following sets form a basis in R3?
a) v1 = (1, 2, 3), v2 = (0, 2, 0)

b) v1 = (1, 2, 3), v2 = (0, 2, 0), v3 = (1, 0, 3)

c) v1 = (1, 2, 3), v2 = (0, 2, 0), v3 = (1, 0, 0)

d) v1 = (1, 2, 3), v2 = (0, 2, 0), v3 = (1, 0, 0),v4 = (5, 1,−3)

e) v1 = (λ, 1, 2), v2 = (1, λ, 2), v3 = (1, 2, λ).
Extra material: notes with solved Problem 1.

43 Bases in the plane and in the 3-space.

44 Bases in the 3-space, Problem 2.
Problem 2: Let v = (1, 2, 3), u = (0, 7, 1). Determine all the vectors w such that R3 = span{v, u, w}.
Extra material: notes with solved Problem 2.

45 Bases in the 4-space, Problem 3.
Problem 3: Let v = (2, 3,−6, 7), u = (0, 1,−1, 1) and w = (1, 2,−5, 5). Determine a basis for the intersection
M ∩N where M = span{v, u, w} and N = {x = (x1, x2, x3, x4); x1 − 2x2 − x3 = 0}.
Extra material: notes with solved Problem 3.

46 Bases in the 4-space, Problem 4.
Problem 4: Let a1 = (1, 2,−3, 4), a2 = (2, 4,−6, 7), a3 = (0, 1,−2, 2), a4 = (0, 1,−1, 1), a5 = (2, 4,−7, 8),
a6 = (1, 2,−2, 3). Determine a basis for the intersection M ∩ N where M = span{a1, a2, a3} and
N = span{a4, a5, a6}.
Extra material: notes with solved Problem 4.

47 Bases in the space of polynomials, Problem 5.
Problem 5: Determine a basis for the subspace U ⊂ R[x]3 spanned by

f1(x) = x2 + 1, f2(x) = x+ 2, f3(x) = 2x2 − x, f4(x) = 2x3 − 1.

Complete it to a basis of the entire R[x]3.
Extra material: notes with solved Problem 5.

48 Coordinates with respect to a basis.

49 Coordinates with respect to a basis are unique.
Extra material: notes from the iPad, with the proof of uniqueness of coordinates.

50 Coordinates in our unifying example.

51 Dimension of a subspace, Problem 6.
Problem 6: Find the dimension of the subspace


a− 3b+ 6c
5a+ 4d

b− 2c− d
5d

 , a, b, c, d ∈ R

 .

Extra material: notes with solved Problem 6.

52 Bases in a space of functions, Problem 7.
Problem 7: Let RX denote the vector space of all the functions from the set X = {1, 2, 3, 4} to R. Determine
a basis for this space and determine the coordinates w.r.t. this basis for function g : X → R given by:

g(1) = −11, g(2) = 7, g(3) = −3

2
, g(4) = 5.

Extra material: notes with solved Problem 7.



S5 Change of basis
You will learn: how to recalculate coordinates between bases by solving systems of linear equations, by using
transition matrices, and by using Gaussian elimination; the geometry behind different coordinate systems.

53 Coordinates in different bases.

54 It is easy to recalculate from the standard basis.
Example 1: Show that the vectors (1, 1, 3), (2, 2, 3) and (3, 1, 3) form a basis in R3. Determine the coordi-
nates of the vector (2, 1, 2) with respect to this basis.

55 Transition matrix, a derivation.

56 Previous example with transition matrix.
Example 2: Determine the coordinates of the vector (2, 1, 2) with respect to the basis formed by (1, 1, 3), (2, 2, 3)
and (3, 1, 3). Use the transition matrix.

57 Our unifying example.
Example 3: B = {f1, f2} with f1 = (2, 4) and f2 = (3, 1) is a basis in R2. Given four vectors with following
coordinates in basis B: v1 = (1,−1), v2 = (1, 1), v3 = (−1, 2) and v4 = (− 1

2 ,−1). Compute their
coordinates in the standard basis in R2 with help of the transition matrix. Make a picture.

58 One more simple example and bases.
Example 4: Compute the coordinates for v = (17,−1) in basis w1 = (8, 1), w2 = (7, 4).

59 Two non-standard bases, Method 1.
Example 5: Determine the transition matrix PB′→B between B′ och B where B = {u1 = (1, 1), u2 =
(−1, 1)} and B′ = {u′

1 = (2, 1), u′
2 = (1, 2)}.

60 Two non-standard bases, Method 2.
The same example as above, with the Method 2.

61 How to recalculate coordinates between two non-standard bases? An algorithm.
The same example as above, with the Method 3.

62 Change of basis, Problem 1.
Problem 1: Let B = {u1,u2} and B′ = {v1,v2} be two bases in R2:

u1 = (2, 2), u2 = (4,−1), v1 = (1, 3), v2 = (−1,−1).

a) Use the following algorithm for computing PB′→B :

[ PB→S | PB′→S ]
elementary row operations−−−−−−−−−−−−−−−−−−→ [ I | P−1

B→SPB′→S = PB′→B ].

b) Use the following algorithm for computing PB→B′ :

[ PB′→S | PB→S ]
elementary row operations−−−−−−−−−−−−−−−−−−→ [ I | P−1

B′→SPB→S = PB→B′ ].

c) Confirm that PB′→B and PB→B′ are inverse to each other.

d) Let w = (5,−3). Determine [w]B and use the transition matrix PB→B′ for computing [w]B′ from [w]B
using the formula:

[w]B′ = PB→B′ [w]B .

e) Let w = (3,−5). Determine [w]B′ and use the transition matrix PB′→B for computing [w]B from [w]B′

using the formula:
[w]B = PB′→B [w]B′ .

Extra material: notes with solved Problem 1.

63 Change of basis, Problem 2.
Problem 2: Find the coordinates for vector w in the basis B = {u1,u2} for R2:



a) u1 = (1, 0), u2 = (0, 1), w = (−4, 3)

b) u1 = (1,−1), u2 = (2, 5), w = (3, 7)

c) u1 = (1, 2), u2 = (−2, 1), w = (a, b).
Extra material: notes with solved Problem 2.

64 Change of basis, Problem 3.
Problem 3: Let
b1 = (1, 1,−1), b2 = (1,−2, 1), b3 = (1, 3,−2)
c1 = (2, 1,−1), c2 = (1, 2, 2), c3 = (−1, 0, 1).
Show that B = {b1, b2, b3} and C = {c1, c2, c3} are bases in R3.
For vectors u,v,w ∈ R3 we have
u = (−1, 1, 1), [v]B = (−1, 1, 1), [w]C = (−1, 1, 1).
Determine the coordinates of r = u− 2v +w
with respect to bases S, B and C.
Extra material: notes with solved Problem 3.

65 Change of basis, Problem 4.
Problem 4: If B1, B2, and B3 are bases for R2, and if

PB1→B2
=

[
4 2
3 2

]
and PB2→B3

=

[
6 −1
2 3

]
,

what is PB3→B1
?

Extra material: notes with solved Problem 4.

66 Change of basis, Problem 5.
Problem 5: The set B = {1+ t, 1+ t2, t+ t2} is a basis for P2[x] (the subspace of all the polynomials with
grade less than or equal to 2). Find the coordinates of p(t) = 6 + 3t− t2 w.r.t. this basis.
Extra material: notes with solved Problem 5.

67 Change to an orthonormal basis in R2.

S6 Row space, column space, and nullspace of a matrix
You will learn: concepts of row and column space, and the nullspace for a matrix; find bases for span of several
vectors in Rn with different conditions for the basis.

68 What you are going to learn in this section.

69 Row space and column space for a matrix.

70 What are the elementary row operations doing to the row spaces?
Problem 1: Determine a basis for the row space of matrix A:

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8


Extra material: notes with solved Problem 1.

71 What are the elementary row operations doing to the column spaces?

72 Column space, Problem 2.



Problem 2: Determine a basis for the column space of matrix A:

A =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8


Extra material: notes with solved Problem 2.

73 Determining a basis for a span, Problem 3.
Problem 3: Find a basis for the subspace of R5 spanned by the vectors

v1 = (1,−2, 0, 0, 3), v2 = (2,−5,−3,−2, 6), v3 = (0, 5, 15, 10, 0), v4 = (2, 6, 18, 8, 6).

Extra material: notes with solved Problem 3.

74 Determining a basis for a span consisting of a subset of given vectors, Problem 4.
Problem 4: Given five vectors in R4: u1 = (2, 1, 1, 1), u2 = (1, 1, 0, 0), u3 = (3, 1, 2, 2), u4 = (1, 1, 1, 0) and
u5 = (1, 0,−2, 1). Which of these vectors span the entire subspace generated by these vectors?
In Video 26 we showed that vector v = (1, 3, 1,−2) belongs to the span; express this vector as a linear
combination of the basis vectors you have identified.
Extra material: notes with solution to Problem 4.

75 Determining a basis for a span consisting of a subset of given vectors, Problem 5.
Problem 5: Given five vectors in R4: u1 = (1, 2, 1,−2), u2 = (−2,−1, 3, 1), u3 = (−1, 1, 4,−1), u4 =
(3, 3,−2,−3) and u5 = (1, 0,−1, 0). Which of these vectors span the entire subspace generated by these
vectors? Determine the coordinates of all the given vectors w.r.t. the basis you have just established.
Extra material: notes with solution to Problem 5.

76 A tricky one: Let rows become columns, Problem 6.
Problem 6: Determine a basis for the row space of matrix A, consisting entirely of row vectors from A:

A =


1 −2 0 0 3
2 −5 −3 −2 6
0 5 15 10 0
2 6 18 8 6


Extra material: notes with solved Problem 6.

77 A basis in the space of polynomials, Problem 7.
Problem 7: Polynomials p1(t) = −1 + t + 2t2 − t3, p2(t) = −3 + 2t + 2t2 − t3, p3(t) = −7 + 4t + 2t2 − t3,
p4(t) = 10 − 7t − 10t2 + 5t3, and p5(t) = −26 + 19t + 28t2 − 14t3 span a subspace of P3[t]. Determine a
basis B of this subspace consisting only of vectors named above. What are the coordinates of all the given
polynomials in basis B?
Extra material: notes with solved Problem 7.

78 Nullspace for a matrix.
Extra material: proof that the nullspace of an m× n matrix is a subspace of Rn.

79 How to find the nullspace, Problem 8.
Problem 8: Find a basis for the nullspace of the matrix A:

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 .



80 Nullspace, Problem 9.
Problem 9: Find a basis for and the dimension of the solution space of the homogenous system:

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Extra material: notes with solved Problem 9.

81 Nullspace, Problem 10.
Problem 10: Find a basis for the nullspace of the matrix A and solve the (non-homogenous) system of
equations:

A =

1 −2 10
2 −3 18
0 −7 14

 ,

 x − 2y + 10z = 9
2x − 3y + 18z = 17

− 7y + 14z = 7

Give a geometrical interpretation of your solution.
Extra material: notes with solved Problem 10.

S7 Rank, nullity, and four fundamental matrix spaces
You will learn: determine the rank and the nullity for a matrix; find orthogonal complement to a given subspace;
four fundamental matrix spaces and the relationship between them.

82 Rank of a matrix.

83 Nullity.
Example: Find a basis for the row space and a basis for the nullspace of the matrix A. What are the values
of rank(A) and nullity(A)?

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 .

84 Relationship between rank and nullity.

85 Relationship between rank and nullity, Problem 1.
Problem 1: In each part, find the largest possible value for
the rank of A and the smallest possible value of nullity of A:
(a) A is 4× 6, (b) A is 5× 5, (c) A is 6× 4.
Extra material: notes with solved Problem 1.

86 Relationship between rank and nullity, Problem 2.
Problem 2: In each part, use the information in the table to determine whether the linear system Ax = b
is consistent. If so, state the number of parameters in its general solution:

(a) (b) (c) (d) (e) (f) (g)
Size of A 3× 3 3× 3 3× 3 5× 9 5× 9 4× 4 6× 2
Rank(A) 3 2 1 2 2 0 2

Rank[A |b ] 3 3 1 2 3 0 2
Consistent?

No of parameters

87 Relationship between rank and nullity, Problem 3.



Problem 3: Are there values of r and s for which

A =


1 0 0
0 r − 2 2
0 s− 1 r + 2
0 0 3


has rank 1? Has rank 2? If so, find those values.

88 Orthogonal complements, Problem 4.
Problem 4: Find a basis for the orthogonal complement M⊥ of M ⊂ R4, where

M = { (a, b, c, d) ∈ R4; a+ b+ c = 0, a+ b+ d = 0, 2a+ 2b+ c+ d = 0 }.
89 Four fundamental matrix spaces.

90 The Fundamental Theorem of Linear Algebra and Gilbert Strang.

C2 Linear transformations

S8 Matrix transformations from Rn to Rm

You will learn: about matrix transformations: understand the way of identifying linear transformations with
matrices (produce the standard matrix for a given transformation, and produce the transformation for a given
matrix); concepts: kernel, image and inverse operators; understand the link between them and nullspace, co-
lumn space and inverse matrix.

91 What do we mean by linear?

92 Some terminology.

93 How to think about functions from Rn to Rm?
Example 1: Determine the set of departure and the codomain
for the following functions:
a) f(x, y, z, w) = (2x− sin y, x2 − yz, w − x)

b) f(x, y, z, w, t) = xyz + wt− sin y

c) f(x, y) = (3x− y, 5x− 8y, −x+ 6y, 7x)

d) f(x1, x2, x3, x4, x5) = (6x1 − 8x4, 2x3 + 4x4 − x5, x2 − 9x3)

e) f(x, y, z, w) = (2− x− w, 7x+ 3z − 3w)

f) f(x, y, z) = (−x− z, 7y + 3z, x+ z).

94 When is a function from Rn to Rm linear? Approach 1.
Example 2: Which of the functions from Example 1 are linear? Motivate.

95 When is a function from Rn to Rm linear? Approach 2.
Example 3: Write standard matrices for all linear transformations in Example 1.
Extra material: notes with solved Example 3.

96 When is a function from Rn to Rm linear? Approach 3.
Example 4: Linearity in Linear Algebra and in Calculus:
a) f(x) = x+ 2 is linear in Calculus but not in Linear Algebra.

b) f(x) = x is linear in both Calculus and Linear Algebra.

c) f(x) = 3x (or, generally, f(x) = cx) is linear in both Calculus and Linear Algebra.

d) f(x, y, z) = ax+ by + cz is linear in both Calculus and Linear Algebra.



e) f(x, y, z) = ax+ by + cz + d (where d ̸= 0) is linear in Calculus but not in Linear Algebra.

97 Approaches 2 and 3 are equivalent.

98 Matrix transformations, Problem 1.
Problem 1: Let T : R3 → R3 be defined by w1 = 4x1− 3x2+x3, w2 = 2x1−x2+5x3, w3 = x1+2x2− 2x3.
Compute T (1, 0, 2) in two ways: by plugging in the coordinates in the formulas, and with help of the
standard matrix.
Extra material: notes with solved Problem 1.

99 Image, kernel, and inverse operators, Problem 2.
Problem 2: Let T : R3 → R3 be defined by w1 = 4x1− 3x2+x3, w2 = 2x1−x2+5x3, w3 = x1+2x2− 2x3.
Is (−6, 16,−5) a value under T of some vector? Determine ker(T ) and Im(T ).
Extra material: notes with solved Problem 2.

100 Basis for the image, Problem 3.
Problem 3: Find a basis for the image of L : R4 → R3 where L defines as

L(x, y, z, w) = (x+ 9y + 7z + 3w, 2x+ 8y − z + w, −x+ 7y + 17z + 5w).

Extra material: notes with solved Problem 3.

101 Kernel, Problem 4.
Problem 4: Let L : R4 → R3 be defined as

L(x, y, z, w) = (x+ y + z + w, x+ 2y + 2z + 3w, 2x+ 3y + 3z + 4w).

a) Determine the nullspace ker(L).

b) Determine a basis for the nullspace.

c) Determine the dimension of the nullspace.
Extra material: notes with solved Problem 4.

102 Image and kernel, Problem 5.
Problem 5: Let L : R4 → R2 be defined as

L(x, y, z, w) = (x+ 2y + z + 2w, 2x+ 4y + 2z + 4w).

a) Determine the nullspace ker(L).

b) Determine a basis for the nullspace.

c) Determine the dimension of the nullspace.

d) Determine the image Im(L).

e) Determine a basis for the image.

f) Determine the dimension of the image.
Extra material: notes with solved Problem 5.

103 Inverse operators, Problem 6.
Problem 6: Determine whether the following operators T : R2 → R2 are one-to-one. If it is the case,
determine the inverse operator T−1.
a) w1 = 2x2, w2 = −x1.

b) w1 = 9x1 + 5x2, w2 = 2x1 − 7x2.

c) w1 = −x2, w2 = −x1.

d) w1 = 3x1, w2 = −5x1.
Extra material: notes with solved Problem 6.



104 Linear transformations, Problem 7.
Problem 7: Let T : R2 → R2 be a linear transformation. Determine its standard matrix knowing that
T (v1) = w1 and T (v2) = w2 where

v1 =

[
3
2

]
, v2 =

[
1
1

]
, w1 =

[
0
2

]
, w2 =

[
2
1

]
.

Extra material: notes with solved Problem 7.

105 Kernel and geometry, Problem 8.
Problem 8: Let T : R3 → R2 be defined by T (x, y, z) = (x+ y + z, x+ 2y + 2z).
a) Determine whether the vectors a = (0,−2, 2), b = (1, 2, 1), c = (0, 0, 0) belong to ker(T ).

b) Determine ker(T ).

c) If all the vectors in kernel start in the origin, then their endpoints form a subspace of R3. Give a
geometrical interpretation of this subspace (a point, a straight line, a plane through the origin).

Extra material: notes with solved Problem 8.

106 Linear transformations, Problem 9.
Problem 9: Let T : R4 → R3 be a linear transformation such that

T (u1) =

11
5

 , T (u2) =

00
4

 , where u1 =


1
1
1
1

 , u2 =


5
5
10
10

 .

Is it possible to, with this information only, determine T (v) where

a) v =


11
11
21
21

 , b) v =


6
6
11
15

?
Extra material: notes with solved Problem 9.

S9 Geometry of matrix transformations on R2 and R3

You will learn: about transformations such as rotations, symmetries, projections and their matrices; you will
learn how to illustrate the actions of linear transformations in the plane.

107 Our unifying example: linear transformations and change of basis.
Example 1: Picture the following matrix transformation:

TA

[
x
y

]
=

[
2 3
4 1

] [
x
y

]
=

[
2x+ 3y
4x+ y

]
(An animation in MANIM included. More animations in videos 108, 111, 112, and 114.)

108 An example with nontrivial kernel.
Example 2: (Example (d) from Problem 6 in Video 103.) Consider the linear operator defined by T (x1, x2) =
(w1, w2) where w1 = 3x1, w2 = −5x1. Compute its kernel and image, and explain the geometry of the
situation.
Extra material: notes from the iPad.

109 Line symmetries in the plane.
Example 3: Line symmetry (reflection):



a) about x-axis,

b) about y-axis,

c) about the diagonal y = x.
Extra material: notes from the iPad.

110 Projection on a given vector, Problem 1.
Problem 1: Determine the standard matrix for the linear transformation T which for each vector v ∈ R3

assigns its projection on vector u = (1, 2, 3), i.e. T (v) = projuv.
Extra material: notes with solved Problem 1.

111 Symmetry about the line y = kx, Problem 2.
Problem 2: Determine the standard matrix for the linear transformation T which for each point (x, y) ∈ R2

assigns its reflection about the line y = 2x.
Extra material: notes with solved Problem 2.

112 Rotation by 90 degrees about the origin.
Extra material: notes from the iPad.

113 Rotation by the angle α about the origin.

114 Expansion, compression, scaling, and shear.

115 Plane symmetry in the 3-space, Problem 3.
Problem 3: Plane symmetry (reflection) about:
a) the xy-plane,

b) the yz-plane,

c) the xz-plane.
Use matrix multiplication to find the image of the vector (3, 4, 5) under these operators.
Extra material: notes with solved Problem 3.

116 Projections on planes in the 3-space, Problem 4.
Problem 4: Orthogonal projection on:
a) the xy-plane,

b) the yz-plane,

c) the xz-plane.
Use matrix multiplication to find the image of the vector (3, 4, 5) under these operators.
Extra material: notes with solved Problem 4.

117 Symmetry about a given plane, Problem 5.
Problem 5: Determine the standard matrix of the symmetry about the plane 3x+ 2y + z = 0.
Extra material: notes with solved Problem 5.

118 Projection on a given plane, Problem 6.
Problem 6: Determine the standard matrix of the orthogonal projection on the plane 3x+ 2y + z = 0.
Extra material: notes with solved Problem 6.

119 Rotations in the 3-space, Problem 7.
Problem 7: Use matrix multiplication to find the image of the vector (−2, 1, 2) if it is rotated:
a) 30◦ about the x-axis,

b) 45◦ about the y-axis,

c) 90◦ about the z-axis.
Extra material: notes with solved Problem 7.



S10 Properties of matrix transformations
You will learn: what happens with subspaces and affine spaces (points, lines and planes) under linear transforma-
tions; what happens with the area and volume; composition of linear transformations as matrix multiplication.

120 What kind of properties we will discuss.

121 What happens with vector subspaces and affine subspaces under linear transformations.

122 Parallel lines transform into parallel lines, Problem 1.
Problem 1: Take our favorite matrix transformation:

TA

[
x
y

]
=

[
2 3
4 1

] [
x
y

]
=

[
2x+ 3y
4x+ y

]
Show that the parallel lines y = − 1

2x and y = − 1
2x+ 3

2 transform onto two parallel lines.

123 Transformations of straight lines, Problem 2.
Problem 2: The invertible matrix:

A =

[
3 1
2 1

]
maps the line y = 2x+ 1 into another line. Find its equation.
Extra material: notes with solved Problem 2.

124 Change of area (volume) under linear operators in the plane (space).
Compare these two transformations:

TA

[
x
y

]
=

[
2 3
4 1

] [
x
y

]
, TB

[
x
y

]
=

[
3 2
1 4

] [
x
y

]
The determinant of the first matrix is negative, the determinant of the second one is positive.

125 Change of area under linear transformations, Problem 3.
Problem 3: Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose
equation is

x2

a2
+

y2

b2
= 1.

126 Compositions of linear transformations.

127 How to obtain the standard matrix of a composition of linear transformations?
Example: Show that the order of performing transformations matter:

A =

[
2 3
4 1

]
and P =

[
0 0
0 1

]
Use these matrices as standard matrices for operators. (The same matrices were used in Video 74 in Part 1,
to show that matrix multiplication is not commutative.)

128 Why does it work?
Extra material: proof that composition of linear transformations is linear transformation.

129 Compositions of linear transformations, Problem 4.
Problem 4: The linear transformation T : R2 → R4 is such that

T (1, 0) = (2,−1, 0, 3), T (0, 1) = (0, 1,−4, 2).



The transformation R : R2 → R2 is the counterclockwise rotation through the angle π/6 around the origin.
Only one of the two compositions R ◦T and T ◦R is possible to perform. Find the standard matrix for this
composition, and explain why the other one is impossible to perform.
Extra material: notes with solved Problem 4.

130 Compositions of linear transformations, Problem 5.
Problem 5: Find the standard matrix for the stated composition in R2:
a) A reflection about the line y = x, followed by an orthogonal projection on the y-axis, followed by a

rotation by 60◦,

b) A reflection about the x-axis, followed by a rotation by 45◦, followed by dilation (scaling with a scale
factor larger than 1) with factor k = 3,

c) A rotation by −60◦, followed by a rotation by 105◦, followed by a rotation by 45◦.
Extra material: notes with solved Problem 5.
Extra material: an article with more solved problems on linear transformations.
⋆ Extra problem 1: The matrix transformation T : R3 → R3 is defined by

T (x1, x2, x3) = (x1 + x2, x2, x3).

Define the matrix transformation S : R3 → R3 as orthogonal projection on the vector v = (1, 2, 0),
that is S(x) = projvx. Determine the standard matrix of S ◦ T .

⋆ Extra problem 2: The matrix transformation F : R2 → R2 rotates vectors counterclockwise about
the origin by the angle π/4. The matrix transformation G : R2 → R2 is the orthogonal projection on
the vector (2, 1). Find the standard matrix for the composition G ◦ F .

⋆ Extra problem 3: The matrix transformation F : R2 → R2 rotates vectors counterclockwise about
the origin by the angle 2π/3. The matrix transformation G : R2 → R2 rotates vectors clockwise about
the origin by the angle π/6. Find the standard matrix for the composition G ◦ F .

S11 General linear transformations in different bases
You will learn: solving problems involving linear transformations between two vector spaces; work with linear
transformations in different bases.

131 Linear transformations between two linear spaces.

132 Linear transformations, Problem 1.
Problem 1: Vector space P3 = P3[t] is the space of all the polynomials p(t) of degree ⩽ 3:
a) Show that the transformation F : P3 → P3 defined by F (p(t)) = (1 + t)p′(t)− 2p(t) is linear.

b) Determine the standard matrix of F in the basis {1, t, t2, t3}.
c) Determine a basis for Im(F ) and ker(F ). (The elements in the bases must be polynomials.)

d) Is F a bijection? Give a motivation for your answer.
Extra material: notes with solved Problem 1.

133 Linear transformations, Problem 2.
Problem 2: P2 = P2[t] is the space of all the polynomials p(t) of degree ⩽ 2 and S2 is the space of all the
symmetrical 2× 2 matrices with real entries. Show that F : P2 → S2 defined by

F (p) =

(
p(−1) p(0)
p(0) p(1)

)
for p(t) = x0 + x1t+ x2t

2 ∈ P2

is linear and invertible. Determine the standard matrix of F−1 in standard bases in P2 and S2.
Extra material: notes with solved Problem 2.



134 Linear transformations, Problem 3.
Problem 3: P3 = P3[t] is the space of all the polynomials p(t) of degree ⩽ 3 and S3 is the space of all the
symmetrical 3× 3 matrices with real entries. The transformation F : P3 → S3 defined by

F (p) =

 p(0) p′(0) p′′(0)
p′(0) p′(1) p′′(1)
p′′(0) p′′(1) p′′(−1)

 for p(t) = x1 + x2t+ x3t
2 + x4t

3 ∈ P3

is linear. Determine the standard matrix of F in standard bases in P3 and S3. Determine also the image
and kernel of F .
Extra material: notes with solved Problem 3.

135 Linear transformations, Problem 4.
Problem 4: Let S2 be the space of all the symmetrical 2×2 matrices with real entries. A linear transformation
F : S2 → S2 has the following matrix in the standard basis of S2:

[F ] =

1 + 2a 1 1
1 2 −1
4a 3 −2a


For which values of the constant a does the intersection of ker(F ) and Im(F ) contain more elements than
only the zero vector of the space? Point out such vectors in these cases. (Don’t forget that our vectors are
symmetrical 2× 2 matrices.)
Extra material: notes with solved Problem 4.

136 Linear transformations, Problem 5.
Problem 5: P2 is the space of all the polynomials p(t) of degree ⩽ 2. Show that F : P2 → R3 defined by

F (p) =

 p(0)
p(0) + p(1)
p′(−1)

 for p(t) = x1 + x2t+ x3t
2 ∈ P2

is linear and invertible. Determine the standard matrix of F and F−1 in standard bases in P2 and R3.
Extra material: notes with solved Problem 5.

137 Linear transformations in different bases, Problem 6.
Problem 6: Let S2 be the space of all the symmetrical 2×2 matrices with real entries. A linear transformation
F : S2 → R3 is defined as F (X) = BXa where:

X =

(
x1 x3

x3 x2

)
, B =

1 0
1 1
0 1

 , a =

(
1
1

)
.

Determine the image and the kernel of this transformation.
Extra material: notes with solved Problem 6.

138 Linear transformations in different bases.

139 Linear transformations in different bases, Problem 7.
Problem 7: Let F : R3 → R3 be the linear transformation defined geometrically as a projection of all vectors
in the space onto the plane x+ y + 2z = 0 along the line (x, y, z) = (t,−t, t), t ∈ R. Determine the matrix
of F in the standard basis of R3.
Extra material: notes with solved Problem 7.

140 Linear transformations in different bases, Problem 8.
Problem 8: Transformation F : R2 → R2 is linear and it satisfies F (u1) = 2u1 and F (u2) = −u2 where
B = {u1, u2} is the basis of R2 with u1 = (−1,−1) and u2 = (1, 2). Determine the standard matrix for



F in the standard basis of R2. Present two method: one with help of transition matrices, one by solving
systems of equations.
Extra material: notes with solved Problem 8.

141 Linear transformations in different bases, Problem 9.
Problem 9: Transformation F : P2 → P2 is defined as F (p) = F (p(t)) = p(t−1) where p(t) = x1+x2t+x3t

2.
Determine the standard matrix of F in the basis B = {b1, b2, b3} = {t, t+ 1, t2 − 1} and show that F
is a bijection.
Extra material: notes with solved Problem 9.

142 Linear transformations, Problem 10.

Problem 10: Show that the matrix transformation TA : R2 → R3 with the standard matrix A =

1 0
0 1
0 0


is injective but not surjective.
Extra material: notes with solved Problem 10.

143 Linear transformations, Problem 11.

Problem 11: Show that the matrix transformation TA : R3 → R2 with the standard matrix A =

(
1 0 0
0 1 0

)
is surjective but not injective.
Extra material: notes with solved Problem 11.

C3 Orthogonality

S12 Gram–Schmidt Process
You will learn: about orthonormal bases and their superiority above the other bases; about orthogonal projec-
tions on subspaces to Rn; produce orthonormal bases for given subspaces of Rn with help of Gram–Schmidt
process.

144 Dot product and orthogonality until now.

145 Orthonormal bases are awesome.

146 Orthonormal bases are awesome, Reason 1: distance.

147 Orthonormal bases are awesome, Reason 2: dot product.

148 Orthonormal bases are awesome, Reason 3: transition matrix.

149 Orthonormal bases are awesome, Reason 4: coordinates.

150 Coordinates in ON bases, Problem 1.
Problem 1: Verify that the vectors

v1 = (− 3
5 ,

4
5 , 0), v2 = ( 45 ,

3
5 , 0), v3 = (0, 0, 1)

form an ON basis for R3. Express the following vectors as linear combinations of v1, v2 and v3:

a) (2, 1,−1), b) (1, 3, 4), c) (17 , −
3
7 ,

5
7 ).

Extra material: notes with solved Problem 1.

151 Coordinates in orthogonal bases, Theorem and proof.

152 Each orthogonal set is linearly independent, Proof.



153 Coordinates in orthogonal bases, Problem 2.
Problem 2: Verify that the vectors

v1 = (1, −2, 3, −4), v2 = (2, 1, −4, −3), v3 = (−3, 4, 1, −2), v4 = (4, 3, 2, 1)

form an orthogonal basis for R4. Express vector u = (−1, 2, 3, 7) as linear combinations of v1, v2, v3, v4.
Extra material: notes with solved Problem 2.

154 Orthonormal bases, Problem 3.
Problem 3: Verify that the vectors

v1 = ( 23 ,
1
3 , −

2
3 ), v2 = ( 13 ,

2
3 ,

2
3 ), v3 = ( 23 , −

2
3 ,

1
3 )

form an ON basis in R3.
Extra material: notes with solved Problem 3.

155 Projection Theorem 1.
Extra material: notes from the iPad.

156 Projection Theorem 2.
Extra material: notes from the iPad.

157 Projection Formula, an illustration in the 3-space.

158 Calculating projections, Problem 4.
Problem 4: Let W = span{v1,v2} where v1 = (0, 1, 0) and v2 = (− 4

5 , 0,
3
5 ). Decompose u = (1, 1, 1) as

the sum w1 +w2 where w1 ∈ W and w2 ∈ W⊥. Verify also that w2 is orthogonal to the generators of W .
Extra material: notes with solved Problem 4.

159 Calculating projections, Problem 5.
Problem 5: (The same as Problem 4, but solved by different method)
Let W = span{v1,v2} where v1 = (0, 1, 0) and v2 = (− 4

5 , 0,
3
5 ). Decompose u = (1, 1, 1) as the sum

w1 +w2 where w1 ∈ W and w2 ∈ W⊥. Use normal vector to W instead of the new formula.
Extra material: notes with solved Problem 5.

160 Gram–Schmidt Process.

161 Gram–Schmidt Process, Our unifying example.
Example: Perform Gram–Schmidt Process for B = {f1, f2} with f1 = (2, 4) and f2 = (3, 1). Make a picture.

162 Gram–Schmidt Process, Problem 6.
Problem 6: The vectors u1 = (1, 1, 1, 1), u2 = (4, 2, 4, 2) and u3 = (1, 0, 0, 0) span a subspace of R4.
Determine an ON-basis for this subspace.
Extra material: notes with solved Problem 6.

163 Gram–Schmidt Process, Problem 7.
Problem 7: Let R4 ⊃ W = span{u1,u2} where u1 = (−1, 0, 1, 2) and u2 = (0, 1, 0, 1). Decompose
u = (3, −4, 2, 5) as the sum w1 +w2 where w1 ∈ W and w2 ∈ W⊥. Verify also that w2 is orthogonal to
the generators of W .
Extra material: notes with solved Problem 7.

Extra material: an article with more solved problems on Gram–Schmidt process.
⋆ Extra problem 1: Vectors u1 = (4, 3, 2, 1) and u2 = (3, 2, 1, 4) span a subspace of R4. Determine an

ON-basis for this subspace using Gram–Schmidt Process.
⋆ Extra problem 2: The vectors u1 = (3, 2, 1, 2), u2 = (0,−5,−1, 1) and u3 = (7, 3, 2, 5) span a subspace

of R4. Determine an ON-basis for this subspace.
⋆ Extra problem 3: The vectors (1, 1, 1, 1), (2, 0, 1, 1), (1,−1, 0, 2) span a subspace of the vector space R4.

Find an ON-basis for this subspace.



S13 Orthogonal matrices
You will learn: definition and properties of orthonormal matrices; their geometrical interpretation.

164 Product of a matrix and its transposed is symmetric.

165 Definition and examples of orthogonal matrices.
Example 1: The following matrices are orthogonal:

A =

[
a b
b −a

]
, B =

[
a −b
b a

]
and Rα =

[
cosα − sinα
sinα cosα

]
for a and b s.t. a2 + b2 = 1 (the first two groups of matrices), and for each α ∈ R (the third group of
matrices). These matrices correspond to line symmetries and to rotations about the origin in the plane.
(Note that for α = 0 we get Rα = I.)

166 Geometry of 2-by-2 orthogonal matrices.

167 A 3-by-3 example.

Example 2: Following matrix is orthogonal: A =


2
3

1
3

2
3

1
3

2
3 − 2

3

− 2
3

2
3

1
3

.

Extra material: notes with solved Example 2.

168 Useful formulas for the coming proofs.
Extra material: notes from the iPad.

169 Property 1: Determinant of each orthogonal matrix is 1 or −1.
Example 3: Matrix corresponding to shear has determinant 1, but is not orthogonal.

170 Property 2: Each orthogonal matrix A is invertible and A−1 is also orthogonal.
Extra material: notes from the iPad.

171 Property 3: Orthonormal columns and rows.

172 Property 4: Orthogonal matrices are transition matrices between ON-bases.

173 Property 5: Preserving distances and angles.
Extra material: notes from the iPad.

174 Property 6: Product of orthogonal matrices is orthogonal.
Extra material: notes from the iPad.

175 Orthogonal matrices, Problem 1.
Problem 1: Determine constants a and b for which matrix A is orthogonal:

a) A =

[√
3
2 a
2 b

]
, b) A =

[
4
5 a
a b

]
, c) A =


1
3 1 b

1
2 a a

1
2 b 1


Extra material: notes with solved Problem 1.

176 Orthogonal matrices, Problem 2.

Problem 2: Following matrix is orthogonal: A =


3/
√
11 −1/

√
6 −1/

√
66

1/
√
11 2/

√
6 −4/

√
66

1/
√
11 1/

√
6 7/

√
66

.

Extra material: notes with solved Problem 2.



C4 Intro to eigendecomposition of matrices

S14 Eigenvalues and eigenvectors
You will learn: compute eigenvalues and eigenvectors for square matrices with real entries; geometric interpre-
tation of eigenvectors and eigenspaces.

177 Crash course in factoring polynomials.

178 Eigenvalues and eigenvectors, the terms.

179 Order of defining, order of computing.

180 Eigenvalues and eigenvectors geometrically.

Examples: TA with standard matrix A =

[
3 0
0 −2

]
; line symmetries; scalings; rotations.

181 Eigenvalues and eigenvectors, Problem 1.
Problem 1: Show that v is an eigenvector for A:

A =

 8 −9 4
3 −4 3
−3 3 1

 , v =

12
3

 .

Determine also the corresponding eigenvalue.
Extra material: notes with solved Problem 1.

182 How to compute eigenvalues. Characteristic polynomial.

Example: Determine the characteristic polynomial and eigenvalues of the matrix A =

[
4 3
3 −4

]
.

183 How to compute eigenvectors.

Example: Determine eigenvectors for A =

[
4 3
3 −4

]
.

Extra material: notes with solved Example.

184 Finding eigenvalues and eigenvectors: short and sweet.

185 Eigenvalues and eigenvectors for examples from Video 180.
Problem 2: Confirm with computations our geometrical observations from Video 180:

TA with standard matrix A =

[
3 0
0 −2

]
; line symmetries; scalings; rotations.

Extra material: notes with solved Problem 2.

186 Eigenvalues and eigenvectors, Problem 3.
Problem 3: Determine all the eigenvalues and eigenvectors for A:

A =

2 5 −5
2 8 −8
2 11 −11

 .

Extra material: notes with solved Problem 3.

187 Eigenvalues and eigenvectors, Problem 4.
Problem 4: Determine all the eigenvalues and eigenvectors for A:

A =

 3 0 0
1 1 2
−2 0 1

 .

Extra material: notes with solved Problem 4.



188 Eigenvalues and eigenvectors, Problem 5.
Problem 5: Determine all the eigenvalues and eigenvectors for A:

A =

 2 1 −1
1 2 1
−1 1 2

 .

Extra material: notes with solved Problem 5.

189 Eigenvalues and eigenvectors, Problem 6.
Problem 6: Determine all the eigenvalues and eigenvectors for A:

A =

 4 6 6
1 3 2
−1 −5 −2

 .

Extra material: notes with solved Problem 6.

190 Eigenvalues and eigenvectors, Problem 7.
Problem 7: Determine all the eigenvalues and eigenvectors for A:

A =

[
2 3
4 1

]
.

Extra material: notes with solved Problem 7.
Extra material: an article with more solved problems on eigenvalues and eigenvectors.
⋆ Extra problem 1: Determine all the eigenvalues and eigenvectors for matrix

A =

−4 2 6
−6 4 6
−3 1 5

 .

⋆ Extra problem 2: Determine all the eigenvalues for matrix

B =

 6 10 2
−3 −1 −3
−4 −10 0

 .

⋆ Extra problem 3: Determine all the eigenvalues and eigenvectors for matrix

A =

4 0 −2
1 3 −2
1 2 −1

 .

S15 Diagonalization
You will learn: to determine whether a given matrix is diagonalizable or not; diagonalize matrices and apply
the diagonalization for problem solving (the powers of matrices).

191 Why you should love diagonal matrices.

192 Similar matrices.

Matrices A =

[
3 4
−2 −3

]
and B =

[
1 0
0 −1

]
are similar.

193 Similarity of matrices is an equivalence relation (RST).

194 Shared properties of similar matrices.



195 Diagonalizable matrices.

Matrix A =

[
3 4
−2 −3

]
is diagonalizable.

196 How to diagonalize a matrix, a recipe.

197 Diagonalize our favorite matrix.

Problem 1: Diagonalize the matrix A =

[
2 3
4 1

]
.

198 Eigenspaces; geometric and algebraic multiplicity of eigenvalues.

199 Eigenspaces, Problem 2.
Problem 2: Let A be a 2×2 matrix and call a line through the origin of R2 invariant under A if Av lies on
this line when v does. Find equations for all lines in R2, if any, that are invariant under the given matrix
transformation:

a) A =

[
4 −1
2 1

]
, b) A =

[
0 1
−1 0

]
, c) A =

[
2 3
0 2

]
.

Extra material: notes with solved Problem 2.

200 Eigenvectors corresponding to different eigenvalues are linearly independent.
Extra material: notes with the proof.

201 A sufficient, but not necessary, condition for diagonalizability.

202 Necessary and sufficient condition for diagonalizability.
Example: Four examples showing that being defective and being singular are two independent features.

203 Diagonalizability, Problem 3.
Problem 3: Is A diagonalizable?:

A =

2 5 −5
2 8 −8
2 11 −11

 .

If this is a case, find the transition matrix P .
Extra material: notes with solved Problem 3.

204 Diagonalizability, Problem 4.
Problem 4: Is A diagonalizable?:

A =

 3 0 0
1 1 2
−2 0 1

 .

If this is a case, find the transition matrix P .
Extra material: notes with solved Problem 4.

205 Diagonalizability, Problem 5.
Problem 5: Is A diagonalizable?:

A =

 2 1 −1
1 2 1
−1 1 2

 .

If this is a case, find the transition matrix P .
Extra material: notes with solved Problem 5.

206 Diagonalizability, Problem 6.
Problem 6: Is A diagonalizable?:

A =

 4 6 6
1 3 2
−1 −5 −2

 .



If this is a case, find the transition matrix P .
Extra material: notes with solved Problem 6.

207 Diagonalizability, Problem 7.

Problem 7: Is A =

[
1 0
9 4

]
diagonalizable? If this is a case, find the transition matrix P .

Extra material: notes with solved Problem 7.

208 Powers of matrices.

209 Powers of matrices, Problem 8.

Problem 8: Let A =

[
7 −12
4 −7

]
. Diagonalize, if possible, matrix A. Compute A2021 and A2022.

Extra material: notes with solved Problem 8.

210 Diagonalization, Problem 9.
Problem 9: Let T : R2 → R2 be the symmetry along the line 3x + 4y = 0. Determine the standard
matrix for T using an appropriate change of variables in which the matrix of T is easy to establish without
computations.
Extra material: notes with solved Problem 9.

211 Sneak peek into the next course; orthogonal diagonalization.
Extra material: an article with more solved problems on diagonalization of matrices.
⋆ Extra problem 1: Determine whether the following matrix is diagonalizable:

A =

−4 2 6
−6 4 6
−3 1 5

 .

⋆ Extra problem 2: Determine whether the following matrix is diagonalizable:

B =

 6 10 2
−3 −1 −3
−4 −10 0

 .

⋆ Extra problem 3: Determine matrix P such that P−1AP is a diagonal matrix and provide this
diagonal matrix.

A =

4 0 −2
1 3 −2
1 2 −1

 .

⋆ Extra problem 4: Determine whether the following matrix is diagonalizable:

B =

−1 2 4
0 3 1
0 0 5

 .

If B is diagonalizable, determine an invertible 3× 3-matrix P such that P−1BP is a diagonal matrix.

⋆ Extra problem 5: For matrix A =

[
3 4
−2 −3

]
we have A = P−1DP with P =

[
1 1
1 2

]
and with

D =

[
1 0
0 −1

]
. Compute A99 and A100.

S16 Wrap-up Linear Algebra and Geometry 2

212 Linear Algebra and Geometry 2, Wrap-up.



213 Yes, there will be Part 3!
214 Final words.

S17 Extras
You will learn: about all the courses we offer, and where to find discount coupons. You will also get a glimpse
into our plans for future courses, with approximate (very hypothetical!) release dates.

B Bonus lecture.
Extra material 1: a pdf with all the links to our courses, and coupon codes.
Extra material 2: a pdf with an advice about optimal order of studying our courses.
Extra material 3: a pdf with information about course books, and how to get more practice.


