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Abstract. In this paper we define Sturmian words with balanced construction. We formulate a fixed-point
theorem for Sturmian words and analyze the set of all fixed points. The inspiration for this work came from
the Kolakoski word and the general idea of self-reading sequences by Păun and Salomaa. The basis for
this article is the author’s earlier research on the influence of the continued fraction elements in the expan-
sion of a ∈ ]0, 1[\Q on the construction of runs for the upper mechanical word with slope a and intercept 0.
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1 Introduction

Word theory has grown very intensively during the last century. The theory has found numerous
applications in computer science, which has stimulated its fast development. Both mathematicians
and theoretical computer scientists have been working on problems connected with word theory and
related domains. A very good illustration of the results of this work and of the variety of domains and
subjects word theory is connected to, is presented in Pytheas Fogg (2002) [16], Lothaire (2002) [13],
Allouche and Shallit (2003) [1], Perrin and Pin (2004) [15], Karhumäki (2004) [10], Berthé, Ferenczi
and Zamboni (2005) [3], and Berstel et al. (2008) [2].

This paper about binary words is inspired mainly by ideas of three persons: William G. Kolakoski,
Herbert Freeman and Azriel Rosenfeld.

Self-reading sequences have been examined by a lot of researchers. Some general definitions of those
can be found in [9, 14]. William G. Kolakoski has described probably the most famous self-reading
sequence, very well known to the community of theoretical computer scientists; see [12] and [16, p. 93].
The Kolakoski word is defined as one of the two fixed points of the run-length encoding ∆; see [5,
6]. These words are identical with their own run-length encoding sequences. The one beginning with
2 is: K = 2211212212211211221211212211211212212211212212 · · · . Brlek et al. have studied some
generalizations of the Kolakoski word to an arbitrary alphabet, which got the name of smooth words;
see [6] and references there.

A simple example of a self-reading sequence is the Morse sequence u which begins with a and is
defined as the fixed point of the Morse substitution σ defined over the alphabet {a, b} by σ(a) = ab,
σ(b) = ba, thus u = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaabab . . .; see also
[16, p. 7]. Another simple self-reading sequence is the Fibonacci word defined as the fixed point w
beginning with 1 of the substitution ϕ(1) = 10, ϕ(0) = 1; see also [16, p. 7]. We show on Figure 1 how
to construct w. The arrows pointing downwards show how we use the definition of the substitution ϕ,
the arrows pointing upwards show how to use the fixed-point condition w = ϕ(w). Because ϕ(w) is
being formed faster than w, we get in each step enough information to be able to construct w.

Generally, the characteristic words of irrational numbers with purely periodic continued fraction
(CF) expansion (i.e., some quadratic surds) are also fixed points of corresponding substitutions, as has
been shown in the paper by Shallit (1991) [18]. These fixed points, and, in particular, the Fibonacci
word, are Sturmian. They are also examples of self-reading sequences.
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w   =   1    0    1    1    0    1    0    1    1    0    1    1    0    1    0    1    1    0    1    0    1    .  .  .

j ( w )   =   1    0    1    1    0    1    0    1    1    0    1    1    0    1    0    1    1    0    1    0    1    .  .  .
Fig. 1. The Fibonacci sequence as the fixed point w beginning with 1 of the substitution ϕ(1) = 10, ϕ(0) = 1.

The cutting sequence of grid lines by the half-line y = ax for a ∈ ]0, 1[ \Q and x > 0 (i.e., the line
passes through no lattice points) is one of binary representations of y = ax, where 0 denotes a vertical
grid crossing and 1 a horizontal one. Such a sequence for straight lines with irrational slopes is Sturmian
[16, p. 143]. There is a close relationship between the cutting sequence of y = ax for a ∈ ]0, 1[ \Q and
the line’s chain code (which is the same, or the same up to the transformation “replace 10 by 1”, as the
characteristic word with slope a, depending on whether the line is naive or standard). Herbert Freeman
(1970) [8, p. 260] observed that in the chain code of a digital straight line “successive occurrences of the
element occurring singly are as uniformly spaced as possible”. This property has been formalized and
has got the name of balance property; see [25]. The self-similarity properties formulated by Bruckstein
(1991) [7] form a quantitative expression of this uniformity principle.

Azriel Rosenfeld described in his paper from 1974 [17] the run-hierarchical structure of digital lines.
On each level k (for k ≥ 2) we have runsk which are composed of a single occurring runk−1 (long Lk−1

or short Sk−1) and a maximal sequence of runsk−1 (short Sk−1 or long Lk−1, respectively) following
after this single one or preceding it. On some levels the long runs are the most frequent (coming in
sequences), while on other levels the short runs are the mainly occurring ones.

In Uscka-Wehlou (2008) [22] we presented a CF-based description of upper mechanical words,
which reflects the run-hierarchical structure of words. The present idea is to create a run-construction
encoding operator, by analogy to the run-length encoding operator. The latter is very well known
and was used for coding the Thue–Morse word by Brlek in 1988 [5] and the former is a new concept,
defined for the first time in the present paper (Definition 6). We will look for the fixed points of the run-
construction encoding operator. For them even the constructional distribution is uniform, in the way
as described by Freeman. In the main theorem of this paper (Theorem 4) we show that every infinite
sequence of positive natural numbers such that all the elements indexed by numbers greater than 1
are greater than 1 generates exactly one fixed point of the run-construction encoding operator. All of
them are self-generating sequences, identical with their own run-construction encoding sequences, by
analogy with the Kolakoski word. In the second half of this paper we present a number of examples.
We also examine the set of all fixed points (Theorem 5) and formulate a number of questions and
combinatorial problems for further research (on p. 8 after Proposition 3, and in Section 6).

2 A continued-fraction-based description of upper mechanical words

In [22] we presented a recursive description by CFs of upper mechanical words. Let us recall the
definiton of those; cf. Lothaire (2002) [13, p. 53].

Definition 1. Given two real numbers a and r with 0 ≤ a ≤ 1, we define two infinite words
s(a, r), s′(a, r):N → {0, 1} by sn(a, r) = ba(n+1)+rc−ban+rc and s′n(a, r) = da(n+1)+re−dan+re.
The word s(a, r) is the lower mechanical word and s′(a, r) is the upper mechanical word with slope a
and intercept r. A lower or upper mechanical word is irrational or rational according as its slope is
irrational or rational.
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In the present paper we deal with the special case when a ∈ ]0, 1[ is irrational and r = 0. In this
case we will denote the lower and upper mechanical words by s(a) and s′(a) respectively. We have
s0(a) = bac = 0 and s′0(a) = dae = 1 and, because dxe − bxc = 1 for irrational x and dxe − bxc = 0
only for integers, we have

s(a) = 0c(a), s′(a) = 1c(a) (1)

(meaning 0, resp. 1 concatenated to c(a)). The word c(a) is called the characteristic word of a. For
each a ∈ ]0, 1[ \ Q, the characteristic word associated with a is thus the following infinite word
c(a):N+ → {0, 1}:

cn(a) = ba(n + 1)c − banc = da(n + 1)e − dane, n ∈ N+. (2)

It is well known that the equality of characteristic words gives the equality of corresponding slopes,
i.e., for any a, a′ ∈ ]0, 1[ \Q, if c(a) = c(a′), then a = a′; cf. Lothaire (2002) [13, p. 62, Lemma 2.1.21].

We assume that, for each a ∈ ]0, 1[ \ Q, its simple CF expansion is given, expressed as a =
[0; a1, a2, a3, . . .], and we know the positive integers ai for all i ∈ N+. These are called the elements
(or partial quotients) of the CF. Let us recall that

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

In our case, when a ∈ ]0, 1[\Q, we have a0 = bac = 0 and the sequence of the CF elements (a1, a2, . . .)
is infinite. For more information about CFs see Khinchin (1997) [11].

Our CF description of upper mechanical words from [22] was based on our earlier one by digitization
parameters from [19] and the following index jump function, introduced by the author in [20].

Definition 2. For each a ∈ ]0, 1[ \Q, the index jump function ia:N+ → N+ is defined by ia(1) = 1,

ia(2) = 2, and ia(k + 1) = ia(k) + 1 + δ1(aia(k)) for k ≥ 2, where δ1(x) =

{
1, x = 1
0, x 6= 1 ,

and aj for

j ∈ N+ are the CF elements of a.

The index jump function is a renumbering which avoids elements following directly after some 1’s in
the CF expansion (in particular, it avoids every second element in the sequences of consecutive 1’s
with index greater than 1); see also [21].

In [22], upper mechanical words were described according to the hierarchy of runs on all levels,
as introduced by Azriel Rosenfeld (1974) [17, p. 1265]. A run of the first level is a maximal sequence
10m, meaning the letter 1 followed by m ≥ 0 letters 0. For a given slope, there are only two possible
run lengths, runs with the smaller length we call short runs (S1) and runs with the largest length we
call long runs (L1). The same holds for the other levels: a run of level n is a maximal sequence of runs
of level n− 1, i.e., Sk

n−1Ln−1, Sn−1L
k
n−1, Ln−1S

k
n−1 or Lk

n−1Sn−1 and the cardinality-wise run length
of runn, denoted by ‖runn‖, is the number (here k + 1) of runsn−1 forming it. We denote by |w| the
binary-word length of a 0-1 word w, i.e., the total number of its letters. The following theorem shows
how exactly the run-hierarchical structure of s′(a) for each a ∈ ]0, 1[ \Q depends on the CF elements
of a. Because of (1) and (2), this gives also a description of lower mechanical and characteristic words.

Theorem 1 ([22]; a CF description of upper mechanical words). Let a ∈ ]0, 1[ \ Q and
a = [0; a1, a2, . . .]. For s′(a) as in Definition 1 we have s′(a) = limk→∞ Pk, where P1 = S1 =
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10a1−1, L1 = 10a1, and, for k ≥ 2,

Pk =



Lk = S
aia(k)

k−1 Lk−1 if aia(k) 6= 1 and ia(k) is even

Sk = Sk−1L
aia(k)+1

k−1 if aia(k) = 1 and ia(k) is even

Sk = Lk−1S
−1+aia(k)

k−1 if aia(k) 6= 1 and ia(k) is odd

Lk = L
1+aia(k)+1

k−1 Sk−1 if aia(k) = 1 and ia(k) is odd,

(3)

where the function ia is defined in Definition 2. The meaning of the symbols is the following: for
k ≥ 1, Pk is the Prefix number k, Sk is the Short runk and Lk is the Long runk. To make the
recursive formula (3) complete, we add that for each k ≥ 2, if Pk = Sk, then Lk is defined in the same
way as Sk, with the only difference that the exponent defined by aia(k) (or by aia(k)+1) is increased
by 1. If Pk = Lk, then Sk is defined in the same way as Lk, with the only difference that the exponent
defined by aia(k) (or by aia(k)+1) is decreased by 1.

The value of the index jump function for each natural k ≥ 2 describes the index of the CF element
which determines the most frequent run on level k− 1 (denoted maink−1), which we can formulate as
the following corollary. The corollary also describes the cardinality-wise run length on each digitization
level and shows how to conclude about the kind of the prefix Pk−1 as obtained in (3) (long Lk−1 or
short Sk−1) from the parity of ia(k).

Corollary 1. Let a ∈ ]0, 1[ \Q and a = [0; a1, a2, a3, . . .]. If s′(a) is the upper mechanical word with
slope a and intercept 0 as defined in Definition 1, then, in the run-hierarchic structure of s′(a) we
have for each k ≥ 2

• aia(k) ≥ 2 ⇒ maink−1 = Sk−1, aia(k) = 1 ⇒ maink−1 = Lk−1,
• ia(k) is odd ⇒ Pk−1 = Lk−1, ia(k) is even ⇒ Pk−1 = Sk−1,

where ia is the corresponding index jump function. Moreover, the cardinality-wise run length on each
level is the following: ‖Sn‖ = bn, ‖Ln‖ = bn + 1, where

b1 = a1 and, for n ≥ 2, bn =

{
aia(n), aia(n) 6= 1
1 + aia(n)+1, aia(n) = 1 .

(4)

Corollary 1 follows immediately from Theorem 1.
Let us recall the concept of the sequence of length specification which was first introduced by the

author in [23] (Definition 3 there).

Definition 3. For any irrational a = [0; a1, a2, . . .], the sequence (bn)n∈N+ = (‖Sn‖)n∈N+ of short
run lengths on all levels in the run-hierarchical construction of the upper mechanical word s′(a) with
slope a and intercept 0, will be called the sequence of length specification.

It is clear from (4), that for each a ∈ ]0, 1[ \Q, the corresponding sequence of length specification
(bn)n∈N+ fulfills b1 ∈ N+ and, for each n ≥ 2, bn ≥ 2. In [23] we also showed that each sequence
fulfilling these condition is the sequence of length specification for some slopes and the cardinality of
the set of these slopes is of the continuum. For a fixed index jump function (i.e., a sequence of values
(dn)n∈N+ such that d1 = 1, d2 = 2 and, for all k ≥ 2 dk ∈ N+ and dk+1 − dk = 1 or dk+1 − dk = 2)
there exists exactly one slope with (bn)n∈N+ as sequence of length specification [23, 24].



5

3 The constructional word

In this section we will define (Definition 4) a new binary word associated with the upper mechanical
word s′(a) for a ∈ ]0, 1[ \Q and we will call it the constructional word. It follows from Definition 2
that, for any a ∈ ]0, 1[ \Q and n ≥ 2

aia(n) = 1 ⇔ ia(n + 1) = ia(n) + 2 and aia(n) ≥ 2 ⇔ ia(n + 1) = ia(n) + 1. (5)

The sequence (ia(n))n∈N+ is thus strictly increasing and the difference between each two consecutive
elements of this sequence is equal to 1 or to 2. This gives us an idea of defining a new two-letter word
associated with a. This word will be called the constructional word and it will code the structure of
s′(a) in terms of long and short runs on all the levels, according to Corollary 1 and (5).

Definition 4. Let a ∈ ]0, 1[ \Q. The constructional word of a is γ = γ(a), defined by

γn = ia(n + 2)− ia(n + 1)− 1

for n ∈ N+, where ia is the index jump function defined in Definition 2.

It follows from (5) that the constructional word for all a ∈ ]0, 1[ \ Q is a 0-1 word, and, for all
n ∈ N+, γn = 1 ⇔ aia(n+1) = 1 and γn = 0 ⇔ aia(n+1) ≥ 2. This gives us the following proposition.

Proposition 1. For each a ∈ ]0, 1[ \Q and for each n ∈ N+ we have γn = δ1(aia(n+1)), where ia is
the index jump function defined in Definition 2.

Corollary 1 shows clearly why γ got the name of constructional word. The elements aia(k) for
k ≥ 2 of the CF expansion of the slope a ∈ ]0, 1[ \Q determine the construction of runsk as sets of
short and long runsk−1. The indices k ∈ N+ numbering letters of γ equal to 1 are the same as the
indices of the digitization levels with the most frequent long runsk (Lk).

Example 1. If the slope a is e − 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . , 1, 1, 2n, 1, 1, . . .], then the
index jump function ia is formed as follows:

a = [0;
b1
1,

b2
2 ,

b3︷︸︸︷
1, 1,

b4
4 ,

b5︷︸︸︷
1, 1,

b6
6 ,

b7︷︸︸︷
1, 1 ,

b8
8 ,

b9︷︸︸︷
1, 1,

b10
10,

b11︷︸︸︷
1, 1 , . . .]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .
(ia(k))k∈N+= ( 1, 2, 3, 5, 6, 8, 9, 11,12, 14,15, . . .).

In the last row we presented the first eleven elements of the sequence of the values of the index
jump function for this a, so (ia(k))1≤k≤11. The sequence of length specification for a = e − 2 is
(bn)n∈N+ = (1, 2, 2, 4, 2, 6, 2, 8, 2, 10, 2, . . . 2, 2n, 2, . . .). The constructional word is γ(e − 2) = (01)ω.
On odd-numbered levels k short runs (Sk) are the most frequent runs, while on even-numbered levels
k long runs (Lk) dominate. The run-hierarchical structure of the digital line y = (e−2)x was thoroughly
discussed in the author’s paper [21, p. 2252, Example 14].

Definition 4 describes how to form the word γ for a ∈ ]0, 1[ \ Q, in terms of the corresponding
function ia. The following proposition is a kind of converse to this definition. It says, how to find the
function ia, given the constructional word of a.

Proposition 2. If a ∈ ]0, 1[ \Q and γ = γ(a) is the constructional word associated with a, then we
have for n ≥ 3

ia(n) = n +
n−2∑
j=1

γj . (6)
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Proof. By induction, from Definitions 2 and 4. ut

We know, from the author’s papers [23, 24], that (ia(n))n∈N+ and (bn)n∈N+ determine the slope
a ∈ ]0, 1[ \Q. Because of Definition 4 and Proposition 2 we know that also (γn)n∈N+ and (bn)n∈N+

determine the slope a ∈ ]0, 1[ \Q.

4 Introduction to Sturmian words

In this section we provide a very brief introduction to Sturmian words, based on Lothaire (2002) [13].
Let A be a set of symbols usually called the alphabet. We denote by A? (in some papers denoted

by A(N)) the set of all finite words over A (i.e., finite sequences of elements from A) and by ε the
empty word. We denote by Aω (AN) the set of (right) infinite words (i.e., sequences of symbols in A
indexed by non-negative integers). In this paper we consider only right infinite words.

A finite word w is a factor of a (finite or infinite) word x if there exist words u (finite) and y
such that x = uwy. Sturmian words are defined as infinite words which have exactly n + 1 different
factors of length n for every natural n. In particular, they have 2 factors of length 1, which means that
each Sturmian word is constructed of exactly 2 letters, which we can call 0 and 1, thus A = {0, 1}.

A word x ∈ Aω is periodic if it is of the form x = zω for some z ∈ A? \ {ε}, eventually periodic
if it is of the form x = yzω for some y, z ∈ A? \ {ε}, and aperiodic if it is not eventually periodic;
cf. Lothaire (2002) [13, p. 9]. We need the following definition to formulate a theorem which shows
equivalent characterizations of Sturmian words (Theorem 2).

Definition 5 (Lothaire 2002:48). For binary words with letters 0 and 1 we define the following.

• The height of a finite word x is the number h(x) of letters equal to 1 in x.
• Given two finite words x and y of the same length, their balance is δ(x, y) = |h(x)− h(y)|.
• A set of finite words X is balanced if ( x, y ∈ X ∧ |x| = |y| ) ⇒ δ(x, y) ≤ 1.
• An infinite word is itself balanced if the set of its factors (thus, finite words) is balanced.

Theorem 2 (Lothaire 2002:57). Let s be an infinite word. We have the following equivalence:
s is Sturmian ⇔ s is balanced and aperiodic ⇔ s is irrational (lower or upper) mechanical.

5 A fixed-point theorem for Sturmian words. Self-generating run construction.

In Sections 2 and 3 we described two words over a two-letter alphabet {0, 1} associated with an
irrational positive slope a < 1. The first of them, the upper mechanical word, is Sturmian (Theorem 2),
the second one, the constructional word, can obviously be any 0-1 word. One could try to describe
the slopes a ∈ ]0, 1[ \Q, for which the levels with the most frequent run being long (or, dually, short)
are uniformly distributed (for such a we will call s′(a) words with balanced construction). And an even
more demanding condition would be: find these a for which γ(a) = c(a). For these a, s′(a) = 1c(a)
will be called word with self-balanced construction, because the distribution of the levels with the most
frequent run being long (equivalently: the distribution of pairs (al, al+1) of CF elements of a such that
al = 1, l ≥ 2, and al is not immediately preceded by an odd number of consecutive CF elements equal
to 1 and with indices greater than 1) is the same as the distribution of the letter 1 in the characteristic
word c(a); c.f. Proposition 4 on page 8 and the discussion there.

We consider {0, 1}ω, the set of all right infinite two-letter words composed of 0’s and 1’s and let
UM0 ⊂ {0, 1}ω be the subset of all upper mechanical words with positive irrational slopes less than
1 and with intercept 0 (which are Sturmian according to Theorem 2).
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Definitions 1 and 4 give us two mappings from ]0, 1[ \ Q to {0, 1}ω. The first one maps each
a ∈ ]0, 1[ \Q to the associated upper mechanical word s′(a) = 1c(a):

s′: ]0, 1[ \Q −→ UM0 ⊂ {0, 1}ω,

the second one maps each a ∈ ]0, 1[ \Q to the associated constructional word γ(a) concatenated with
prefix 1:

1γ: ]0, 1[ \Q −→ {0, 1}ω, (1γ)(a) = 1γ(a).

Definition 6. The run-construction encoding operator ∆c:UM0 −→ {0, 1}ω is defined as ∆c =
(1γ) ◦ (s′)−1.

{0, 1}ω ⊃ UM0

]0, 1[ \Q UM0
-

?

H
HHH

HHH
HHj

s′

∆c1γ

The mapping is well defined (Lemma 2.1.21 from Lothaire 2002:62 mentioned in Section 2). We can
also describe this operator by analogy with the run-length encoding operator as in [6]:

∆c(s′(a))(0) = 1, ∆c(s′(a))(n) = δ1(aia(n+1)) for n ∈ N+

which, according to Corollary 1, can be written in the following, more illustrative way:

∆c(s′(a))(n) =

{
0, Sn is the most frequent run on level n
1, Ln is the most frequent run on level n

for n ∈ N+.

Definition 7. Let a ∈ ]0, 1[ \Q. The upper mechanical word s′(a) has

• balanced construction if its constructional word γ(a) is a characteristic word c(α) (not necessarily
with irrational slope) for some α.

• Sturmian-balanced construction if γ(a) is a characteristic word c(α) for some α ∈ ]0, 1[ \Q.
• self-balanced construction if 1γ(a) = ∆c(1c(a)) = 1c(a), i.e., its constructional word is equal to its

characteristic word, i.e., s′(a) is a fixed point of ∆c.

Clearly: self-balanced construction ⇒ Sturmian-balanced construction ⇒ balanced construction.

Example 2. The words s′(a) with a = [0; a1, a2, a3, . . .], where ak ≥ 2 for all k ≥ 2, have balanced
construction. We have ia(k) = k for all k ∈ N+ and aia(k) ≥ 2 for all k ≥ 2. This means that the
constructional word γ = γ(a) is defined by γn = 0 for all n ∈ N+, which is the characteristic word with
slope 0. This also means that no upper mechanical word with dominating short run on all digitization
levels can be a fixed point of ∆c.

Example 3. The words s′(a) with a = [0; a1, 1, a3, 1, a5, 1, a7, . . .], where a2k−1 ∈ N+ for all k ∈ N+,
have balanced construction. We have ia(1) = 1 and ia(k) = 2k − 2 for k ≥ 2, and aia(k) = 1 for
all k ≥ 2. This means that the constructional word γ = γ(a) is defined by γn = 1 for all n ∈ N+,
which is the characteristic word with slope 1. This also means that no upper mechanical word with
dominating long run on all digitization levels can be a fixed point of ∆c.



8

Let us recall the following theorem, which is a merge of Lagrange’s theorem from 1770 with Euler’s
theorem from 1737; see [4, pp. 66–71].

Theorem 3 (Euler, Lagrange). Quadratic surds (i.e., algebraic numbers of the second degree), and
only they, are represented by periodic or eventually periodic CFs.

Example 4. A generalization of Example 3: For each k ∈ N+ \ {1} and for each infinite matrix A =
[aij ]i∈N+,j∈[1,k]Z , where ai1 ∈ N+ and aij ∈ N+ \ {1} for i ∈ N+ and j ∈ [2, k]Z, the upper mechanical
words s′(a) with slopes a = [0; a11, . . . , a1k, 1, a21, . . . , a2k, 1, a31, . . . , a3k, 1, a41, . . . , a4k, 1, a51, . . .] have
balanced construction. We have aia(nk+1) = ank+n = 1 for all n ∈ N+. The constructional words
of all these slopes for a fixed k are 0k−110k−110k−11 . . . . They correspond to the word with slope 1

k . If
all the rows of the matrix A are identical, the CF expansion is periodic and a is quadratic irrational.

Example 5. A generalization of Example 3: For each k ∈ N+ \ {1} and each pair of infinite ma-
trices [aij ]i∈N+,j∈[1,k]Z and [a′ij ]i∈N+,j∈[1,k+1]Z such that ai1, a

′
i1 ∈ N+ and aij , a

′
is ∈ N+ \ {1} for

all indices i ∈ N+, j ∈ [2, k]Z and s ∈ [2, k + 1]Z, the upper mechanical words s′(a) with slopes
[0; a11, . . . , a1k, 1, a′11, . . . , a

′
1,k+1, 1, a21, . . . , a2k, 1, a′21, . . . , a

′
2,k+1, 1, a31, . . .] have balanced construc-

tion. The constructional words of all these s′(a) for fixed k are 0k−110k10k−110k10k−11 . . .. They
correspond to the upper mechanical words s′(a) with slopes a = 2

2k+1 .

Proposition 3. There exist no quadratic surds which are slopes to upper mechanical words with
Sturmian-balanced construction.

Proof. Let a ∈ ]0, 1[ \ Q be any quadratic surd. If there are no 1’s in the CF expansion of a, then
γ(a) = 000 · · ·, which is the characteristic word with slope 0, which is rational. If there is a 1 in the
CF expansion of a, then, according to Theorem 3, either this 1 is only in the beginning of the CF (if
we have eventual periodicity) or is repeated periodically, which will lead to a characteristic word of a
rational number, if any. ut

Quadratic surds with purely periodic CF expansion are slopes of fixed points of corresponding
substitutions as defined in Shallit (1991) [18]. It follows from Proposition 3, that no quadratic surds
can be slopes of fixed points of ∆c. No quadratic surds can have Sturmian-balanced construction,
but some of them have balanced construction. It would be an interesting combinatorial exercise to
describe all the quadratic surds with balanced construction (give a necessary and sufficient condition
on the CF expansion of slopes) and, generally, to give a necessary and sufficient condition on the
elements of the CF expansion of a = [0; a1, a2, . . .] to generate an upper mechanical word s′(a) with
balanced construction, Sturmian-balanced construction, self-balanced construction. Proposition 1 and
Definition 7 give us the following characterization of the CF expansion of the slopes of fixed points
of ∆c. Let a = [0; a1, a2, . . .]. A pair (al, al+1) of CF elements in the expansion of a will be called
an essential pair if al = 1, l ≥ 2, and the element al = 1 is immediately preceded by an even
number, i.e., 0, 2, 4, . . ., of consecutive 1’s with index greater than 1, i.e., ∃ k ∈ N, [0; a1, a2, . . .] =
[0; a1, a2, . . . , al−2k−1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

2k

, al, al+1, . . .] and, if l − 2k − 1 ≥ 2, then al−2k−1 ≥ 2; cf. essential

1’s in [23, 24].

Proposition 4. If a = [0; a1, a2, . . .], then s′(a) is a fixed point of ∆c iff cn(a) = δ1(aia(n+1)) for all
n ∈ N+, where c(a) is the corresponding characteristic word.

This means that for a fixed point s′(a) = 1c(a), each essential pair in the CF expansion of a reflects in
the letter 1 on the corresponding place in c(a), while the letters 0 of c(a) appear on places corresponding
to the places of remaining (i.e., no members of essential pairs) CF elements ak (k ≥ 2) of a.
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An upper mechanical word with slope a ∈ ]0, 1[ \Q and intercept 0 is a word with self-balanced
construction (a fixed point of ∆c) if its construction according to the hierarchy of runs and the arrange-
ment of 0’s and 1’s in the word itself are made according to the same rules. The levels with dominating
long runs are uniformly distributed like the 1’s in the original characteristic word corresponding to
the upper mechanical word. The following theorem is the main result of this paper.

Theorem 4 (main result). Let (bn)n∈N+ be any sequence of natural numbers such that b1 ∈ N+

and bn ≥ 2 for all n ≥ 2. There exists exactly one fixed point of ∆c with (bn)n∈N+ as the sequence of
its length specification as defined in Definition 3.

Proof. We will show how to find the fixed point w = s′(a) corresponding to given (bn)n∈N+ . The
uniqueness will follow from the construction. In our reasoning we will use the following rules:

R1. Fixed point condition: for each k ∈ N, prefk+1(w) = 1γ1 · · · γk, where prefk+1(w) denotes the k+1
letters long prefix of the upper mechanical word w = s′(a) we are looking for, and γ = γ(a).

R2. (γ1, γ2, . . . , γk) determines (ia(1), ia(2), . . . , ia(k + 2)) according to (6)
R3. (γ1, γ2, . . . , γk) and (b1, b2, . . . , bk+1) determine (a1, a2, . . . , aia(k+1)) according to R2, Proposition 1

and (4) in the following way. For j = 1, 2, . . . , k

γj = 1 ⇒
[
aia(j+1) = 1 ∧ aia(j+1)+1 = bj+1 − 1

]
, γj = 0 ⇒ aia(j+1) = bj+1

R4. According to R2 and R3, (γ1, . . . , γk) and (b1, . . . , bk+1) determine (uniquely!) the prefix Pk+1 (as
in the run-hierarchical description (3)) of the upper mechanical word w we are looking for.

One can see that we need to describe a way of finding (γ1, γ2, . . .) to be able to reconstruct the
fixed point (according to the condition R1) with the length specification (b1, b2, b3, . . .). Because we
do have whole (b1, b2, b3, . . .), R1–R4 imply that it is enough to show that for any k ∈ N+ we have
|Pk+1| > k+1 = |1γ1 · · · γk|, i.e., that the prefixes produced of (γ1, γ2, . . . , γk) and (b1, b2, b3, . . .) are on
each step of the construction long enough to supply us with more information about the constructional
word, which enables us to continue the construction using R1. So we have to prove |Pk+1| > k + 1 for
each k ∈ N+ (which is actually a severe understatement; see Corollary 1 in [22] and the last but one
column in the table in Example 6).

Let us first suppose that b1 ≥ 2. We know from Theorem 1, that P1 is short and |P1| = b1 ≥ 2 > 1,
so, because of the recursive construction (3), we get by easy induction |Pk+1| ≥ 2k+1 > k + 1.

If b1 = 1, we get from Theorem 1 |P1| = 1, which does not look well, because |P1| < 2. To continue
our construction, we have to get our information about γ1 from somewhere else than P1 and R1.
Because the first run of level 1 is always short, we know that s′(a) = 1c(a) = 11 . . . , thus, R1 gives us
γ1 = 1. This implies (rule R3) that a2 = aia(1+1) = 1 (and a3 = b2−1) and we get the following prefix
of s′(a): P2 = S2 = S1L

a3
1 = 1(10)b2−1 from (3) (the second row of the formula, because ia(2) = 2

and a2 = 1). Now we have already |P2| ≥ 3 > 1 + 1 for any b2 and again, we obtain by induction
|Pk+1| ≥ 2k−1 · 3 > k + 1 for k ≥ 1, which completes the proof. ut

The speed of finding the fixed point grows together with b1, but we have shown that even in case
b1 = 1 we can both get started and go on with our construction. Let us take the length specification
b1 = 1 and bn = 2 for n ≥ 2. This gives the slowest possible process of finding of the slope of the fixed
point, but still, even in this worst case, it is possible to construct the unique fixed point:

Example 6. We will find the fixed point of ∆c with the length specification (1, 2, 2, 2, . . .). We are thus
looking for such a ∈ ]0, 1[ \Q that prefk+1(s′(a)) = 1γ1 · · · γk for each k ∈ N, and (1, 2, 2, 2, 2, . . .) is
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the corresponding sequence of length specification. At the starting point we only know that the first
letter of s′(a) is, by definition, 1. In each of the following steps we get P2, P3, . . . (step n gives us Pn+1).

The facts that b1 = 1 and that the first run of level 1 is short, gives us only the information, that
s′(a) = 1c(a) = 11 . . . thus, because pref2(s′(a)) = 1γ1, we get γ1 = 1, which implies (rule R3) that
a2 = aia(1+1) = 1 (and a3 = b2−1 = 1) and we get the following prefix of s′(a): P2 = S2 = S1L1 = 110
from (3) (the second row of the formula, because ia(2) = 2 and a2 = 1). We have moreover ia(3) =
3 + γ1 = 4 (even number).

Further, because 110 = pref3(s′(a)) = 1γ1γ2, we get γ2 = 0, which means that aia(2+1) = a4 =
b3 = 2 and ia(4) = 4 + γ1 + γ2 = 5. We get P3 = L3 = S2

2L2 = 11011011010 (from the first row of (3),
because aia(3) 6= 1 and ia(3) is even). This gives us, because of R1, γ3 = 1, γ4 = 1, γ5 = 0, γ6 = 1,
γ7 = 1, γ8 = 0, γ9 = 1, γ10 = 0, which, according to R4, allows us to get P4, · · · , P11. Prefixes P2, P3

and P4 are illustrated on Figure 2. One can see the analogy to Figure 1.

1 g  =  1    1    0    1    1    0    1    1    0    1    0    1    1    0    1    1    0    1    1    0    1    0    1    1    0    1    1    0    1   0   .  .  .

s ' ( a )  =  1    1    0    1    1    0    1    1    0    1    0    1    1    0    1    1    0    1    1    0    1    0    1    1    0    1    1    0    1    0   .  .  .
P 2

P 3
P 4

Fig. 2. The prefixes P2, P3 and P4 of the fixed point of ∆c with the length specification (bn)n∈N+ = (1, 2, 2, 2, . . .).

We can summarise the data we have until now in the following table. In the next to last column,
|Pk+1| denotes the binary-word length of prefix Pk+1 (total number of 0’s and 1’s forming it).

given k ia(k + 1) aia(k+1) bk+1 Sk+1 Lk+1 gives Pk+1 |Pk+1| gives

γ1 = 1 1 2 = 1 2 S1L1 S1L
2
1 S1L1 3 γ2

γ2 = 0 2 4 6= 1 2 S2L2 S2
2L2 S2

2L2 11 γ3, . . . , γ10

γ3 = 1 3 5 = 1 2 L3S3 L2
3S3 L2

3S3 30 γ11, . . . , γ29

γ4 = 1 4 7 = 1 2 L4S4 L2
4S4 L2

4S4 79 γ30, . . . , γ78

γ5 = 0 5 9 6= 1 2 L5S5 L5S
2
5 L5S5 128 γ79, . . . , γ127

γ6 = 1 6 10 = 1 2 S6L6 S6L
2
6 S6L6 305 γ128, . . . , γ304

γ7 = 1 7 12 = 1 2 S7L7 S7L
2
7 S7L7 787 γ305, . . . , γ786

γ8 = 0 8 14 6= 1 2 S8L8 S2
8L8 S2

8L8 2843 γ787, . . . , γ2842

γ9 = 1 9 15 = 1 2 L9S9 L2
9S9 L2

9S9 7742 γ2843, . . . , γ7741

γ10 = 0 10 17 6= 1 2 L10S10 L10S
2
10 L10S10 12641 γ7742, . . . , γ12640

We proceed in this way. The fixed point s′(a) = 1c(a) is
S2︷︸︸︷
110

S2︷︸︸︷
110

L2︷ ︸︸ ︷
11010

L3︷ ︸︸ ︷
11011011010

S3︷ ︸︸ ︷
11011010︸ ︷︷ ︸

L4

110110110101101101101011011010︸ ︷︷ ︸
L4

1101101101011011010︸ ︷︷ ︸
S4

. . .
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so the constructional word γ(a) = 101101101011011011010 . . ., which gives the following slope a:

[0; 1, 1, 1︸︷︷︸
aia(2)=1

, 2, 1, 1︸︷︷︸
aia(4)=1

, 1, 1︸︷︷︸
aia(5)=1

, 2, 1, 1︸︷︷︸
aia(7)=1

, 1, 1︸︷︷︸
aia(8)=1

, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, . . .].

Let us analyze the set of all fixed points of ∆c.

Theorem 5. Let Fix(∆c) ⊂ UM0 denote the set of all fixed points of ∆c. Then:

1. Fix(∆c) ⊂ s′(]0, 2
3 [\Q); numbers 0 and 2

3 are accumulation points of (s′)−1(Fix(∆c)).
2. card(Fix(∆c)) is equal to that of the continuum.

Proof. It is clear that we can go as near as we want towards 0. If we take b1 →∞ then [0; b1, b2, . . .] → 0.
It remains to be shown that we cannot have a fixed point with slope larger than 2

3 . We will look for
maximal a such that 1c(a) is a fixed point of ∆c. First, to get as large slope as possible, we have to have
b1 = 1 (otherwise the slope is less than 1

2). So, we proceed as in Example 6, s′(a) = 11 . . ., thus γ1 = 1,
so a2 = 1, which means that aia(2) = 1, so ia(3) = 4 (a3 is not of the form aia(k) for any k ∈ N+). The
maximal possible slope of a fixed point begins with [0; 1, 1, . . .]. We are absolutely free in the choice of
the next element, because it does not affect the constructional word, as it is not a value of the index
jump function. So, to make the slope maximal, we choose 1, because [a0; a1, a2, . . .] < [a′0; a

′
1, a

′
2, . . .]

iff (a0,−a1, a2,−a3, a4,−a5, . . .)
lexic.
< (a′0,−a′1, a

′
2,−a′3, a

′
4,−a′5, . . .), where the second inequality is

according to the lexicographical order on sequences. Taking b3 →∞ (thus, making the slope as large
as possible), we get the limit value of 2

3 , because [0; 1, 1, 1, b3, . . .] → 2
3 . We can also illustrate the

solution with the following table:

given k ia(k + 1) aia(k+1) bk+1 Sk+1 Lk+1 gives Pk+1

γ1 = 1 1 2 = 1 2 S1L1 S1L
2
1 S1L1

γ2 = 0 2 4 6= 1 b3 Sb3−1
2 L2 Sb3

2 L2 Sb3
2 L2

so the largest slopes of fixed points have the form [0; 1, 1, 1, b3, . . .] and tend to 2
3 when b3 →∞.

s′(a) = Sb3
2 L2 . . . = (110)b3(11010) . . .

b3→∞→ s′
(

2
3

)
.

To prove the second statement of the theorem, we only need to recall that, according to Theorem 4,
each sequence of length specification generates exactly one fixed point and each fixed point has its
length specification (the same). The set of all fixed points has thus the same cardinality as the set of
all sequences of length specification, which is the same as this of NN. ut

6 Conclusions and open problems

In this paper we have defined a run-construction encoding operator by analogy to the well-known run-
length encoding operator and we formulated and proved a fixed-point theorem for Sturmian words. We
also presented some combinatorial problems concerning quadratic surds (on p. 8, after Proposition 3).
Some questions and problems arise also in connection with the run-construction encoding operator
and the set of its fixed points. Theorem 5 gives us some answers. It states that the cardinality of the
set of all fixed points is equal to that of the continuum (which follows from the main theorem of this
paper, Theorem 4) and that no slopes of fixed points are larger than 2

3 . No fixed point of substitutions
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as described in Shallit (1991) [18] can be a fixed point of the run-construction encoding operator.
Proposition 3 states that no quadratic surds can be slopes of fixed points of the operator.

There are still some problems to be solved. For example:
• Is the set of slopes of all fixed points of the run-construction encoding operator, i.e. the set
(s′)−1(Fix(∆c)), dense in ]0, 2

3 [\Q? Does it have accumulation points different from 0 and 2
3?

• What kind of irrational numbers are the slopes of fixed points? Are they all transcendental?
• An algorithm finding fixed points related to the equivalence classes defined by sequences of length
specification (b1, b2, . . .) could be written.
• How can we use the fixed points in digital geometry?

Acknowledgments. I am grateful to Christer Kiselman for comments on earlier versions of the
manuscript.
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